【題目】在四邊形 ABCD 中,對(duì)角線 AC、BD 相交于點(diǎn) O,過(guò)點(diǎn) O 的兩條直線分別交邊 AB、CD、AD、BC 于點(diǎn) E、F、G、H.

(感知)如圖,若四邊形 ABCD 是正方形,且 AG=BE=CH=DF,則 S 四邊形AEOG S 正方形 ABCD;

(拓展如圖②,若四邊形 ABCD 是矩形, S 四邊形 AEOGS 矩形 ABCD,設(shè) AB=a, AD=b,BE=m, AG 的長(zhǎng)用含 a、b、m 的代數(shù)式表示);

(探究)如圖,若四邊形 ABCD 是平行四邊形,且 AB=3,AD=5,BE=1, 試確定 F、G、H 的位置,使直線 EF、GH 把四邊形 ABCD 的面積四等分.

【答案】【感知】;【拓展】AG=;【探究】當(dāng) AG=CH=,BE=DF=1 時(shí),直線 EF、GH 把四邊形 ABCD 的面積四等分.

【解析】

感知如圖①,根據(jù)正方形的性質(zhì)和全等三角形的性質(zhì)即可得到結(jié)論;

拓展如圖②,過(guò)OONADN,OMABM,根據(jù)圖形的面積得到mb= AGa,于是得到結(jié)論;

探究如圖③,過(guò)OKLAB,PQAD,則KL=2OK,PQ=2OQ,根據(jù)平行四邊形的面積公式得到,根據(jù)三角形的面積公式列方程即可得到結(jié)論.

感知如圖①,

∵四邊形ABCD是正方形,

∴∠OAG=OBE=45°,OA=OB,

在△AOG與△BOE中,

∴△AOG≌△BOE,

S四邊形AEOG=SAOBS正方形 ABCD;

故答案為:;

拓展如圖②,過(guò)OONAD N,OMABM,

SAOBS矩形ABCD,S四邊形AEOGS矩形ABCD,

SAOB=S四邊形AEOG

SAOB=SBOE+SAOE,S四邊形AEOG=SAOG+SAOE,

SBOE=SAOG,

SBOEBEOM=b=mb,SAOGAGON=AGa=AGa,

mb=AGa,

AG=

探究如圖③,過(guò)OKLAB,PQAD,

KL=2OK,PQ=2OQ,

S平行四邊形ABCD=ABKL=ADPQ,

3×2OK=5×2OQ,

,

SAOBS平行四邊形ABCD,S四邊形AEOGS平行四邊形ABCD,

SAOB=S四邊形AEOG

SBOE=SAOG,

SBOEBEOK=×1×OK,SAOGAGOQ,

×1×OK=AGOQ,

=AG=,

∴當(dāng)AG=CH=,BE=DF=1時(shí),直線EF、GH把四邊形ABCD的面積四等分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABC≌△DEF,AM、DN分別是ABCDEF的角平分線,

(1)求證:AM=DN

(2)其他兩對(duì)應(yīng)角的角平分線也有此結(jié)果嗎?它們有什么規(guī)律,請(qǐng)用一句話表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,CE 平分ACD,AE 平分BAC,且EACACE=90°

1)請(qǐng)判斷 AB CD 的位置關(guān)系,并說(shuō)明理由;

2)如圖 2,若E=90° AB CD 的位置關(guān)系保持不變,當(dāng)直角頂點(diǎn) E 移動(dòng)時(shí),寫出BAE ECD 的數(shù)量關(guān)系,并說(shuō)明理由;

3)如圖 3,P 為線段 AC 上一定點(diǎn),點(diǎn) Q 為直線 CD 上一動(dòng)點(diǎn),且 AB CD 的位置 關(guān)系保持不變,當(dāng)點(diǎn) Q 在射線 CD 上運(yùn)動(dòng)時(shí)(不與點(diǎn) C 重合)PQD,APQ BAC 有何數(shù)量關(guān)系?寫出結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于t的不等式組恰有三個(gè)整數(shù)解,則關(guān)于x的一次函數(shù)y=x-a的圖象與反比例函數(shù)y=的圖象的公共點(diǎn)的個(gè)數(shù)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四張質(zhì)地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.

(1)求隨機(jī)抽取一張卡片,恰好得到數(shù)字2的概率;

(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見(jiàn)信息圖.你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)用列表法或畫(huà)樹(shù)形圖法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知小華家、小夏家、小紅家及學(xué)校在同一條大路旁,一天,他們放學(xué)后從學(xué)校出發(fā),先向南行1000m到達(dá)小華家A處,繼續(xù)向北行3000m到達(dá)小紅B家處,然后向南行6000m到小夏家C處.

(1)以學(xué)校以原點(diǎn),以向南方向?yàn)檎较颍?/span>1個(gè)單位長(zhǎng)度表示1000m,請(qǐng)你在數(shù)軸上表示出小華家、小夏家、小紅家的位置;

(2)小紅家在學(xué)校什么位置?離學(xué)校有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:直線l1與直線l2平行,且它們之間的距離為3,A,B是直線l1上的兩個(gè)定點(diǎn),C,D是直線l2上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),AB=CD=6,連接AC、BD、BC,將ABC沿BC折疊得到A1BC.(如圖1)

(1)當(dāng)A1D重合時(shí)(如圖2),四邊形ABDC是什么特殊四邊形,為什么?

(2)當(dāng)A1D不重合時(shí),連接A1D,則A1 DBC(不需證明),此時(shí)若以A1,B,C,D為頂點(diǎn)的四邊形為矩形,且矩形的邊長(zhǎng)分別為a,b,求(a+b)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ly=x,過(guò)點(diǎn)A1(1,0)作A1B1x軸,與直線l交于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)圓弧交x軸于點(diǎn)A2;再作A2B2x軸,交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫(huà)圓弧交x軸于點(diǎn)A3;……,按此作法進(jìn)行下去,則點(diǎn)An的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,P是∠BAC內(nèi)的一點(diǎn),PEAB,PFAC,垂足分別為點(diǎn)EF,AE=AF.求證:

1PE=PF;

2)點(diǎn)P在∠BAC的平分線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案