【題目】探索與運(yùn)用:

1)基本圖形:如圖,已知OCAOB的角平分線,DEOB,分別交OA、OC于點(diǎn)D、E.求證:DE=OD;

2)在圖中找出這樣的基本圖形,并利用(1)中的規(guī)律解決這個問題:已知ABC中,兩個內(nèi)角ABCACB的平分線交于點(diǎn)O,過點(diǎn)ODEBC,交AB、AC于點(diǎn)DE.求證:DE=BD+CE;

3)若將圖中兩個內(nèi)角的角平分線改為一個內(nèi)角(如圖,ABC)、一個外角(ACF)和兩個都是外角(如圖DBC、BCE)的角平分線,其它條件不變,則線段DE、BD、CE的數(shù)量關(guān)系分別是:圖 、圖 :并從中任選一個結(jié)論證明.

【答案】1)(2)(3)證明見解析

【解析】

試題分析:1)根據(jù)角平分線的定義得到AOC=BOC,根據(jù)平行線的性質(zhì)得到DEO=BOC,等量代換得到DEO=AOC,根據(jù)等腰三角形的判定即可得到結(jié)論;

2)根據(jù)ABC中,ABCACB的平分線相交于點(diǎn)O.求證DBO=OBCECO=BCO,再利用兩直線平行內(nèi)錯角相等,求證出DOB=DBOCOE=BCO,即BD=DOOE=CE,然后利用等量代換即可求出結(jié)論;

3)選證明:由(1)中證明可得:DB=DOEO=EC,根據(jù)線段的和差即可得到結(jié)論

證明:(1OC平分AOB

∴∠AOC=BOC,

DEOB

∴∠DEO=BOC,

∴∠DEO=AOC

DE=OD;

2∵∠ABCACB的平分線相交于點(diǎn)O

∴∠DBO=OBC,ECO=BCO,

DEBC,交AB于點(diǎn)D,交AC于點(diǎn)E

∴∠DOB=DBOCOE=ECO,

BD=DO,OE=CE

DE=BD+CE;

3)圖DE=BD﹣CE,圖DE=BD+CE,

證明:

由(1)中證明可得:DB=DO,EO=EC

DE=OD=OE=DB﹣CE

故答案為:DE=BD﹣CE,DE=BD+CE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A0,α),Bb,α),且α、b滿足(a﹣22+|b﹣4|=0,現(xiàn)同時將點(diǎn)A,B分別向下平移2個單位,再向左平移1個單位,分別得到點(diǎn)AB的對應(yīng)點(diǎn)C,D,連接ACBDAB

1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD

2)在y軸上是否存在一點(diǎn)M,連接MCMD,使SMCD=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說明理由.

3)點(diǎn)P是線段BD上的一個動點(diǎn),連接PA,PO,當(dāng)點(diǎn)PBD上移動時(不與B,D重合)的值是否發(fā)生變化,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的每一個外角都等于30°,則這個多邊形的邊數(shù)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義新運(yùn)算:對于任意實(shí)數(shù)a,b,都有ab=a(a﹣b)+1,等式右邊是通常的加法,減法及乘法運(yùn)算.比如:25=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5

(1)求3(﹣2)的值;

(2)若3x的值小于16,求x的取值范圍,并在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(14分)探究與發(fā)現(xiàn):如圖①,在RtABC中,∠BAC=90°,AB=AC,點(diǎn)D在底邊BC上,AE=AD,連結(jié)DE.

(1)當(dāng)∠BAD=60°時,求∠CDE的度數(shù);

(2)當(dāng)點(diǎn)DBC (點(diǎn)B、C除外) 上運(yùn)動時,試猜想并探究∠BAD與∠CDE的數(shù)量關(guān)系;

(3)深入探究:若∠BAC≠90°,試就圖②探究∠BAD與∠CDE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a+b=3,ab=1,則a2+b2=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓的面積公式為sr2,其中變量是( 。

A. s B. π C. r D. sr

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列解題過程的空白處填上適當(dāng)?shù)膬?nèi)容(推理的理由或數(shù)學(xué)表達(dá)式)

如圖,已知ABCD,BE、CF分別平分ABCDCB,求證:BECF

證明:

ABCD,(已知)

∴∠ = .(

,(已知)

∴∠EBC=ABC,(角的平分線定義)

同理,FCB= BCD

∴∠EBC=FCB.(等式性質(zhì))

BECF.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)y=﹣與y=ax+1(a≠0)的圖象可能是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案