【題目】如圖,菱形ABCD的邊AB=8,∠B=60°,P是AB上一點,BP=3,Q是CD邊上一動點,將梯形APQD沿直線PQ折疊,A的對應點A′.當CA′的長度最小時,CQ的長為( )

A.5
B.7
C.8
D.

【答案】B
【解析】解:作CH⊥AB于H,如圖,

∵菱形ABCD的邊AB=8,∠B=60°,
∴△ABC為等邊三角形,
∴CH= AB=4 ,AH=BH=4,
∵PB=3,
∴HP=1,
在Rt△CHP中,CP= =7,
∵梯形APQD沿直線PQ折疊,A的對應點A′,
∴點A′在以P點為圓心,PA為半徑的弧上,
∴當點A′在PC上時,CA′的值最小,
∴∠APQ=∠CPQ,
而CD//AB,
∴∠APQ=∠CQP,
∴∠CQP=∠CPQ,
∴CQ=CP=7.
故選B.
作CH⊥AB于H,如圖,根據(jù)菱形的性質可判斷△ABC為等邊三角形,則CH= AB=4 ,AH=BH=4,再利用勾股定理計算出CP=7,再根據(jù)折疊的性質得點A′在以P點為圓心,PA為半徑的弧上,利用點與圓的位置關系得到當點A′在PC上時,CA′的值最小,然后證明CQ=CP即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】耐心算一算:

(1)﹣3﹣7;

(2)﹣(﹣7)﹣(﹣5)+(﹣4)

(3)

(4)(﹣81)÷÷(﹣16)

(5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B,FC,E在直線lF,C之間不能直接測量,點ADl異側,測得AB=DE,AC=DFBF=EC.

1求證:ABC≌△DEF;

2指出圖中所有平行的線段,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某校學生的身高狀況,隨機對該校男生、女生的身高進行抽樣調查.已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制如圖所示的統(tǒng)計圖表.

已知女生身高在A組的有8人,根據(jù)圖表中提供的信息,回答下列問題:

(1)補充圖中的男生身高情況直方圖,男生身高的中位數(shù)落在_______組(填組別字母序號);

(2)在樣本中,身高在150≤x<155之間的人數(shù)共有_______人,身高人數(shù)最多的在____組(填組別序號);

(3)已知該校共有男生400人,女生420人,請估計身高不足160的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將連續(xù)的偶數(shù)2,4,6,8……,排成如下表:

(1)十字框中的五個數(shù)的和與中間的數(shù)16有什么關系?

(2)設中間的數(shù)為x,用代數(shù)式表示十字框中的五個數(shù)的和,

(3)若將十字框上下左右移動,可框住另外的五個數(shù),其它五個數(shù)的和能等于2010嗎?如能,寫出這五個數(shù),如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校從初二(1)班和(2)班各選拔10名同學組成甲隊和乙隊,參加數(shù)學競賽活動,此次競賽共有10道選擇題,答對8題(含8題)以上為優(yōu)秀,兩隊選手答對題數(shù)統(tǒng)計如下:

答對題數(shù)

5

6

7

8

9

10

平均數(shù)(

甲隊選手

1

0

1

5

2

1

8

乙隊選手

0

0

4

3

2

1

a

中位數(shù)

眾數(shù)

方差(s2

優(yōu)秀率

甲隊選手

8

8

1.6

80%

乙隊選手

b

c

1.0

m

(1)上述表格中,a=   ,b=   ,c=   ,m=   

(2)請根據(jù)平均數(shù)和眾數(shù)的意義,對甲、乙兩隊選手進行評價.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某市舉辦的讀好書,講禮儀活動中,東華學校積極行動,各班圖書角的新書、好書不斷增多,除學校購買外,還有師生捐獻的圖書.下面是七年級(1)班全體同學捐獻圖書的情況統(tǒng)計圖:

請你根據(jù)以上統(tǒng)計圖中的信息,解答下列問題:

1)該班有學生多少人?

2)補全條形統(tǒng)計圖;

3)七(1)班全體同學所捐獻圖書的中位數(shù)和眾數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,點EBC的延長線上,的平分線BD的平分線CD相交于點D,連接AD,則下列結論中,正確的是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解外來務工子女就學情況,某校對七年級各班級外來務工子女的人數(shù)情況進行了統(tǒng)計,發(fā)現(xiàn)各班級中外來務工子女的人數(shù)有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅統(tǒng)計圖:
(1)求該校七年級平均每個班級有多少名外來務工子女?并將該條形統(tǒng)計圖補充完整;
(2)學校決定從只有2名外來務工子女的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名外來務工子女來自同一個班級的概率.

查看答案和解析>>

同步練習冊答案