【題目】某校從初二(1)班和(2)班各選拔10名同學(xué)組成甲隊和乙隊,參加數(shù)學(xué)競賽活動,此次競賽共有10道選擇題,答對8題(含8題)以上為優(yōu)秀,兩隊選手答對題數(shù)統(tǒng)計如下:
答對題數(shù) | 5 | 6 | 7 | 8 | 9 | 10 | 平均數(shù)() |
甲隊選手 | 1 | 0 | 1 | 5 | 2 | 1 | 8 |
乙隊選手 | 0 | 0 | 4 | 3 | 2 | 1 | a |
中位數(shù) | 眾數(shù) | 方差(s2) | 優(yōu)秀率 | ||||
甲隊選手 | 8 | 8 | 1.6 | 80% | |||
乙隊選手 | b | c | 1.0 | m |
(1)上述表格中,a= ,b= ,c= ,m= .
(2)請根據(jù)平均數(shù)和眾數(shù)的意義,對甲、乙兩隊選手進(jìn)行評價.
【答案】(1)8,8,7,;(2)見解析.
【解析】
(1)根據(jù)表格中的數(shù)據(jù)可以求得a、b、c、m的值;
(2)根據(jù)表格中的數(shù)據(jù)可以從平均數(shù)和眾數(shù)的意義,對甲、乙兩隊選手進(jìn)行評價.
解:(1)平均數(shù).
中位數(shù):共有10名同學(xué),中位數(shù)為第5、第6的平均數(shù),即b=8;
眾數(shù)c=7,優(yōu)秀率;
(2)甲乙兩隊的平均數(shù)都為8,說明兩隊的平均水平相同,甲隊的眾數(shù)為8,乙隊的眾數(shù)為7,說明出現(xiàn)人數(shù)最多的題數(shù)中,甲隊大于乙隊,若僅從平均數(shù)和眾數(shù)分析,甲隊優(yōu)于乙隊。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A點的初始位置位于數(shù)軸上表示1的點,現(xiàn)對A點做如下移動:第1次向左移動3個單位長度至B點,第2次從B點向右移動6個單位長度至C點,第3次從C點向左移動9個單位長度至D點,第4次從D點向右移動12個單位長度至E點,…,依此類推.這樣第_____次移動到的點到原點的距離為2018.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G.若BG=4 ,則△CEF的面積是( )
A.
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AB=8,∠B=60°,P是AB上一點,BP=3,Q是CD邊上一動點,將梯形APQD沿直線PQ折疊,A的對應(yīng)點A′.當(dāng)CA′的長度最小時,CQ的長為( )
A.5
B.7
C.8
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于下列結(jié)論: ①二次函數(shù)y=6x2 , 當(dāng)x>0時,y隨x的增大而增大.
②關(guān)于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均為常數(shù),a≠0),則方程a(x+m+2)2+b=0的解是x1=﹣4,x2=﹣1.
③設(shè)二次函數(shù)y=x2+bx+c,當(dāng)x≤1時,總有y≥0,當(dāng)1≤x≤3時,總有y≤0,那么c的取值范圍是c≥3.
其中,正確結(jié)論的個數(shù)是( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD,AB∥DC,∠B=55°,∠1=85°,∠2=40°
(1)求∠D的度數(shù);
(2)求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形紙片ABCD的邊長為3,點E、F分別在邊BC、CD上,將AB、AD分別沿AE、AF折疊,點B,D恰好都落在點G處,已知BE=1,則EF的長為( )
A.1.5
B.2.5
C.2.25
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0)、C(0,4),點B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式;
(2)線段AB上有一動點P,過點P作y軸的平行線,交拋物線于點Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點M的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com