【題目】如圖,正方形的邊在正方形的邊上,連結(jié)、.
(1)觀察猜想與之間的大小關(guān)系,并證明你的結(jié)論;
(2)圖中是否存在通過(guò)旋轉(zhuǎn)能夠互相重合的兩個(gè)三角形?若存在,說(shuō)出旋轉(zhuǎn)過(guò)程;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)BE=DG.理由參見(jiàn)解析;(2)存在.
【解析】
(1)證明線(xiàn)段相等,通常證明線(xiàn)段所在的三角形全等,這里需要證明△BCE≌△DCG即可.
(2)滿(mǎn)足旋轉(zhuǎn)后能重合,首先這兩個(gè)三角形得全等,圖中有這樣的兩個(gè)三角形,所以存在.
(1)∵四邊形ABCD和四邊形ECGF都是正方形,
∴BC=DC,EC=GC,∠ECB=∠GCD=90,
∴△BCE≌△DCG(SAS),
∴BE=DG.
(2)由(1)證明過(guò)程知,存在,是Rt△BCE和Rt△DCG.
將Rt△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90,可與Rt△DCG完全重合.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,的平分線(xiàn)交于點(diǎn),交的延長(zhǎng)線(xiàn)于點(diǎn),于點(diǎn),,則的周長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某社區(qū)今年準(zhǔn)備新建一養(yǎng)老中心,其中規(guī)劃建造三類(lèi)養(yǎng)老專(zhuān)用房間共100間,這三類(lèi)養(yǎng)老專(zhuān)用房間分別為單人間(1個(gè)養(yǎng)老床位),雙人間(2個(gè)養(yǎng)老床位),三人間(3個(gè)養(yǎng)老床位),因?qū)嶋H需要,單人間房間數(shù)在10至30之間(包括10和30),且雙人間的房間數(shù)是單人間的2倍,設(shè)規(guī)劃建造單人間的房間數(shù)為.
(1)根據(jù)題意,填寫(xiě)下表:
單人間的房間數(shù) | 10 | … | … | 30 | |
雙人間的房間數(shù) | _________ | … | … | 60 | |
三人間的房間數(shù) | 70 | … | _________ | … | _________ |
養(yǎng)老床位數(shù) | 260 | … | _________ | … | _________ |
(2)若該養(yǎng)老中心建成后可提供養(yǎng)老床位200個(gè),求的值;
(3)求該養(yǎng)老中心建成后最多提供養(yǎng)老床位多少個(gè)?最少提供養(yǎng)老床位多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)草莓采摘園為吸引顧客,在草莓銷(xiāo)售價(jià)格相同的基礎(chǔ)上分別推出優(yōu)惠方案,甲園:顧客進(jìn)園需購(gòu)買(mǎi)門(mén)票,采摘的草莓按六折優(yōu)惠.乙園:顧客進(jìn)園免門(mén)票,采摘草莓超過(guò)一定數(shù)量后,超過(guò)的部分打折銷(xiāo)售.活動(dòng)期間,某顧客的草莓采摘量為x kg,若在甲園采摘需總費(fèi)用y1元,若在乙園采摘需總費(fèi)用y2元, y1,y2與x之間的函數(shù)圖象如圖所示,則下列說(shuō)法中錯(cuò)誤的是( )
A.甲園的門(mén)票費(fèi)用是60元
B.草莓優(yōu)惠前的銷(xiāo)售價(jià)格是40元/kg
C.乙園超過(guò)5 kg后,超過(guò)的部分價(jià)格優(yōu)惠是打五折
D.若顧客采摘12 kg草莓,那么到甲園或乙園的總費(fèi)用相同
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形ABCD中,∠ABC=60°,AB=4,點(diǎn)M在BC邊上,過(guò)點(diǎn)M作PM∥AB交對(duì)角線(xiàn)BD于點(diǎn)P,連接PC.
(1)如圖1,當(dāng)BM=1時(shí),求PC的長(zhǎng);
(2)如圖2,設(shè)AM與BD交于點(diǎn)E,當(dāng)∠PCM=45°時(shí),求證:=;
(3)如圖3,取PC的中點(diǎn)Q,連接MQ,AQ.
①請(qǐng)?zhí)骄?/span>AQ和MQ之間的數(shù)量關(guān)系,并寫(xiě)出探究過(guò)程;
②△AMQ的面積有最小值嗎?如果有,請(qǐng)直接寫(xiě)出這個(gè)最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形中,的圓心從點(diǎn)開(kāi)始沿折線(xiàn)以的速度向點(diǎn)運(yùn)動(dòng),的圓心從點(diǎn)開(kāi)始沿邊以的速度向點(diǎn)運(yùn)動(dòng),半徑為的半徑為,若分別從點(diǎn)、點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為
(1)請(qǐng)求出與腰相切時(shí)的值;
(2)在范圍內(nèi),當(dāng)為何值時(shí),與外切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交于A(-1,0)和B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱(chēng)軸與x軸交于點(diǎn)E,點(diǎn)D為頂點(diǎn),連接BD、CD、BC.
(1)求證△BCD是直角三角形;
(2)點(diǎn)P為線(xiàn)段BD上一點(diǎn),若∠PCO+∠CDB=180°,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為拋物線(xiàn)上一點(diǎn),作MN⊥CD,交直線(xiàn)CD于點(diǎn)N,若∠CMN=∠BDE,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,以為直徑的,交于點(diǎn),且交直線(xiàn)于點(diǎn),連接.
如圖1,求證:;
如圖2,為鈍角時(shí),過(guò)點(diǎn)作于點(diǎn)求證:;
如圖3,在的條件下,在∠BDF的內(nèi)部作,使分別交于點(diǎn)交于點(diǎn),若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,Rt△ABC中,點(diǎn)D,E分別為直角邊AC,BC上的點(diǎn),若滿(mǎn)足AD2+BE2=DE2,則稱(chēng)DE為R△ABC的“完美分割線(xiàn)”.顯然,當(dāng)DE為△ABC的中位線(xiàn)時(shí),DE是△ABC的一條完美分割線(xiàn).
(1)如圖1,AB=10,cosA=,AD=3,若DE為完美分割線(xiàn),則BE的長(zhǎng)是 .
(2)如圖2,對(duì)AC邊上的點(diǎn)D,在Rt△ABC中的斜邊AB上取點(diǎn)P,使得DP=DA,過(guò)點(diǎn)P畫(huà)PE⊥PD交BC于點(diǎn)E,連結(jié)DE,求證:DE是直角△ABC的完美分割線(xiàn).
(3)如圖3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割線(xiàn),點(diǎn)P是斜邊AB的中點(diǎn),連結(jié)PD、PE,求cos∠PDE的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com