【題目】1是某市200945日至14日每天最低氣溫的折線統(tǒng)計圖.

(1)圖2是該市200745日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補全圖2中頻數(shù)分布直方圖;

(2)在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____

(3)請用扇形圖表示出這十天里溫度的分布情況.

【答案】(1)作圖見解析;(2)7,7.5,2.8;(3)見解析.

【解析】

(1)根據(jù)圖1找出8、9、10℃的天數(shù),然后補全統(tǒng)計圖即可;

(2)根據(jù)眾數(shù)的定義,找出出現(xiàn)頻率最高的溫度;按照從低到高排列,求出第5、6兩個溫度的平均數(shù)即為中位數(shù);先求出平均數(shù),再根據(jù)方差的定義列式進行計算即可得解;

(3)求出7、8、9、10、11℃的天數(shù)在扇形統(tǒng)計圖中所占的度數(shù),然后作出扇形統(tǒng)計圖即可.

(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,

補全統(tǒng)計圖如圖;

(2)根據(jù)條形統(tǒng)計圖,7℃出現(xiàn)的頻率最高,為3天,

所以,眾數(shù)是7;

按照溫度從小到大的順序排列,第5個溫度為7℃,第6個溫度為8,

所以,中位數(shù)為(7+8)=7.5;

平均數(shù)為(6×2+7×3+8×2+10×2+11)=×80=8,

所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],

=(8+3+0+8+9),

=×28,

=2.8;

(3)6℃的度數(shù),×360°=72°,

7℃的度數(shù),×360°=108°,

8℃的度數(shù),×360°=72°,

10℃的度數(shù),×360°=72°,

11℃的度數(shù),×360°=36°,

作出扇形統(tǒng)計圖如圖所示.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,過點D作DE∥BC交AB于點E,DF∥AB交BC于點F.

(1)求證:四邊形BEDF為菱形;

(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,E、F分別是AB、BC邊的中點,EPCD于點P,BAD=110°,則∠FPC的度數(shù)是( 。

A. 35° B. 45° C. 50° D. 55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們把橫、縱坐標均為整數(shù)的點叫做整點.已知反比例函數(shù)y=(m<0)與y=x2﹣4在第四象限內圍成的封閉圖形(包括邊界)內的整點的個數(shù)為2,則實數(shù)m的取值范圍為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:我們學習等邊三角形時得到直角三角形的一個性質:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.即:如圖1,在RtABC中,∠ACB=90°,ABC=30°,則:AC=AB.

探究結論:小明同學對以上結論作了進一步研究.

(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結論:①△ACE為等邊三角形;②BECE之間的數(shù)量關系為  

(2)如圖2,點D是邊CB上任意一點,連接AD,作等邊ADE,且點E在∠ACB的內部,連接BE.試探究線段BEDE之間的數(shù)量關系,寫出你的猜想并加以證明.

(3)當點D為邊CB延長線上任意一點時,在(2)條件的基礎上,線段BEDE之間存在怎樣的數(shù)量關系?請直接寫出你的結論  

拓展應用:如圖3,在平面直角坐標系xOy中,點A的坐標為(﹣,1),點Bx軸正半軸上的一動點,以AB為邊作等邊ABC,當C點在第一象限內,且B(2,0)時,求C點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,C,D分別為半徑OB,弦AB的中點,連接CD并延長,交過點A的切線于點E.

(1)求證:AECE.

(2)若AE=,sinADE=,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中有三個點A(-3,2)B(-4,-3)、C(-1,-1)

(1)連接A、B、C三點,請在右圖中作出ABC關于x軸對稱的圖形A/B/C/,并直接寫出對稱點A/,B/,C/的坐標;

(2)用直尺在縱軸上找到一點P(0,n)滿足PB/+PA的值最小(在圖中標明點P的位置,并寫出n的值在哪兩個連續(xù)整數(shù)之間).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,AB、AD上各有一點P、Q,APQ的周長為2,求∠PCQ.

為了解決這個問題,我們在正方形外以BCAB延長線為邊作CBE,使得CBE≌△CDQ(如圖)

(1)CBE可以看成由CDQ怎樣運動變化得到的?

(2)圖中PQPE的長度有什么關系?為什么?

(3)請用(2)的結論證明PCQ≌△PCE;

(4)根據(jù)以上三個問題的啟發(fā),求∠PCQ的度數(shù).

(5)對于題目中的點Q,若Q恰好是AD的中點,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D

1)求頂點D的坐標(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經過點C

①求拋物線的函數(shù)關系式;

②如圖2,點Ey軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、MN分別和點O、BE對應),并且點MN都在拋物線上,作MFx軸于點F,若線段MFBF12,求點M、N的坐標;

③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.

查看答案和解析>>

同步練習冊答案