精英家教網 > 初中數學 > 題目詳情

如圖,Rt△AOB是一張放在平面直角坐標系中的三角形紙片,點O與原

點重合,點A在x軸正半軸上,點B在y軸正半軸上,,,將Rt△AOB折疊,使OB邊落在AB邊上,點O與點D重合,折痕為BE.

(1)求點E和點D的坐標;

(2)求經過O、D、A三點的二次函數圖像的解析式.

解:(1)過點D作DFOA,垂足為F,因為Rt△AOB沿BE折疊時,OB邊落在AB邊上,點O與點D重合,所以,(). 由Rt△AOB中,,得,且,得點().在Rt△AOB中,由,得,得點();Rt△AOB中,由,所以D是AB的中點,得,,得點().

(2)設經過O、D、A三點的二次函數圖像的解析式為.把,,得)  解得

所以,經過O、D、A三點的二次函數圖像的解析式為().

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,Rt△AOB是一張放在平面直角坐標系中的直角三角形紙片,點O與原點重合,點A在x軸上,點B在y軸上,OB=
3
,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點O與點D重合,折痕為BC.
(1)求直線BC的解析式;
(2)求經過B,C,A三點的拋物線y=ax2+bx+c的解析式;若拋物線的頂點為M,試判斷點M是否在直線BC上,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,Rt△AOB是一張放在平面直角坐標系中的三角形紙片,點O與原點重合,點A在x軸正半軸上,點B在y軸正半軸上,OB=2
3
,∠OAB=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點O與點D重合,折精英家教網痕為BE.
(1)求點E和點D的坐標;
(2)求經過O、D、A三點的二次函數圖象的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,Rt△AOB是一張放在平面直角坐標系中的三角形紙片,點O與原點精英家教網重合,點A在x軸上,點B在y軸上OB=
3
,∠BAO=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點O與點D重合,折痕為BE.
(1)求點E和點D的坐標;
(2)求經過O、D、A三點的二次函數解析式;
(3)設直線BE與(2)中二次函數圖象的對稱軸交于點F,M為OF中點,N為AF中點,在x軸上是否存在點P,使△PMN的周長最小,若存在,請求出點P的坐標和最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,Rt△AOB是一張放在平面直角坐標系中的三角形紙片,點O與原點重合,點A在x軸正半軸上,點B在y軸正半軸上,數學公式,∠OAB=30°,將Rt△AOB折疊,使OB邊落在AB邊上,點O與點D重合,折痕為BE.
(1)求點E和點D的坐標;
(2)求經過O、D、A三點的二次函數圖象的解析式.

查看答案和解析>>

科目:初中數學 來源:山東省中考真題 題型:解答題

如圖,Rt△AOB是一張放在平面直角坐標系中的直角三角形紙片,點O與原點重合,點A在x軸上,點B在y軸上,OB=,∠BAO=30度,將Rt△AOB折疊,使BO邊落在BA邊上,點O與點D重合,折痕為BC。

(1)求直線BC的解析式;
(2)求經過B,C,A三點的拋物線y=ax2+bx+c的解析式;若拋物線的頂點為M,試判斷點M是否在直線BC上,并說明理由。

查看答案和解析>>

同步練習冊答案