【題目】在平面直角坐標系xOy中,過⊙C上一點P作⊙C的切線l.當入射光線照射在點P處時,產生反射,且滿足:反射光線與切線l的夾角和入射光線與切線l的夾角相等,點P稱為反射點.規(guī)定:光線不能“穿過”⊙C,即當入射光線在⊙C外時,只在圓外進行反射;當入射光線在⊙C內時,只在圓內進行反射.特別地,圓的切線不能作為入射光線和反射光線.光線在⊙C外反射的示意圖如圖1所示,其中∠1=∠2.
(1)自⊙C內一點出發(fā)的入射光線經⊙C第一次反射后的示意圖如圖2所示,P1是第1個反射點.請在圖2中作出光線經⊙C第二次反射后的反射光線和反射點P3;
(2)當⊙O的半徑為1時,如圖3:
①第一象限內的一條入射光線平行于y軸,且自⊙O的外部照射在圓上點P處,此光線經⊙O反射后,反射光線與x軸平行,則反射光線與切線l的夾角為___________°;
②自點M(0,1)出發(fā)的入射光線,在⊙O內順時針方向不斷地反射.若第1個反射點是P1,第二個反射點是P2,以此類推,第8個反射點是P8恰好與點M重合,則第1個反射點P1的坐標為___________;
(3)如圖4,點M的坐標為(0,2),⊙M的半徑為1.第一象限內自點O出發(fā)的入射光線經⊙M反射后,反射光線與坐標軸無公共點,求反射點P的縱坐標的取值范圍.
【答案】(1)答案見解析;(2)①45°;②(, )或(, );(3).
【解析】試題分析:(1)(2)兩個問題,要根據(jù)題意,畫出圖象,可以解決.
(3)當反射光線平行x軸時,反射光線與坐標軸沒有交點,只要求出這樣的反射點,就可以解決這個問題了.
試題解析:(1)如圖:
(2)①由題意:∠1=∠2,∠APB=90°,
∴∠1=45°,
∴反射光與切線的夾角為45°.
②由題意:這些反射點組成的多邊形是正十二邊形或正六邊形,
當是正十二邊形時,入射光線與反射光線夾角為150°,
∴∠AOP1=30°,
∵OP1=1,
∴P1(-, ).
當是正六邊形時,易知P1(-, ),
綜上所述滿足條件的點P坐標為(-, )或(-, ).
(3)如圖:當反射光PA∥X軸時,反射光線與坐標軸沒有交點,作PD⊥OC,PN⊥OM垂足分別為M,N,設OP=OC=a,PC=b,
則有,
解得b=(負根已經舍棄)
∵,
∴PD=,
當OP與⊙M相切時,可得點P的縱坐標為,
∴滿足條件的反射點P的縱坐標y: ≤y<.
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經過點A(2,3).
(1)求這個函數(shù)的解析式;
(2)判斷點B(-1,6),C(3,2)是否在這個函數(shù)的圖象上,并說明理由;
(3)當-3<x<-1時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象平行于y=-2x+1,且過點(2,-1),求:
(1)這個一次函數(shù)的解析式;
(2)畫出該一次函數(shù)的圖象:根據(jù)圖象回答:當x取何值時不等式 kx+b>3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,這是人民公園的景區(qū)示意圖.以中心廣場為原點,分別以正東、正北 方向為 x 軸、y 軸正方向建立平面直角坐標系,規(guī)定一個單位長度代表 100m 長.已知 各建筑物都在坐標平面網(wǎng)格的格點上,且東門的坐標為(400,0).
(1)請寫出圖中下列地點的坐標:
牡丹園 ; 游樂園 ;
(2)連接音樂臺、湖心亭和望春亭這三個 地點,畫出所得的三角形.然后將所 得三角形向下平移 200m,畫出平移后的圖形;
(3)問題(2)中湖心亭平移后的對應點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連結OE.下列結論:
①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的結論有______.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個邊長分別為a,b(a>b)的正方形連在一起,三點C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經過小正方形右下頂點E.若OB2﹣BE2=10,則k的值是( )
A. 3 B. 4 C. 5 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】濟南市地鐵1號線于2019年1月1日起正式通車,在修建過程中,技術人員不斷改進技術,提高工作效率,如在打通一條長600米的隧道時,計劃用若干小時完成,在實際工作過程中,每小時打通隧道長度是原計劃的1.2倍,結果提前2小時完成任務.
(1)求原計劃每小時打通隧道多少米?
(2)如果按照這個速度下去,后面的360米需要多少小時打通?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D為等腰直角△ABC內一點,∠ACB=90°,AD=BD,∠BAD=30°,E為AD延長線上的一點,且CE=CA,若點M在DE上,且DC=DM.則下列結論中:①∠ADB=120°;②△ADC≌△BDC;③線段DC所在的直線垂直平分線AB;④ME=BD;正確的有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交AD于F.
(1)求證:AF=DE;
(2)若E為AD的三等分點(靠近A點),BE=8,CF=6,求直線AD與BC之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com