精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知等邊三角形ABC,點D為線段BC上一點,以線段DB為邊向右側作DEB,使DECD,若∠ADB,∠BDE=(1802m°,則∠DBE的度數是( 。

A.m60°B.1802m°C.2m90°D.120m°

【答案】A

【解析】

如圖連接AE.證明△ADC≌△ADESAS),推出AD,E,B四點共圓,即可解決問題.

解:如圖,連接AE

∵△ABC是等邊三角形,

∴∠C=∠ABC60°,

∵∠ADBm°,∠BDE=(1802m°,

∴∠ADC180°m°,∠ADE180°m°,

∴∠ADC=∠ADE,

ADAD,DCDE,

∴△ADC≌△ADESAS),

∴∠C=∠AED60°,∠DAC=∠DAE,

∴∠DEA=∠DBA,

A,D,E,B四點共圓,

∴∠DBE=∠DAE=∠DAC=(m60°,

故選:A

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,菱形OABC的頂點Ax軸的正半軸上,頂點C的坐標為(1,).

(1)求圖象過點B的反比例函數的解析式;

(2)求圖象過點A,B的一次函數的解析式;

(3)在第一象限內,當以上所求一次函數的圖象在所求反比例函數的圖象下方時,請直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在OBC中,邊BC的垂直平分線交BOC的平分線于點D,連接DBDC,過點DDFOC于點F.

(1)BOC60°,求BDC的度數;

(2)BOC,則BDC ;(直接寫出結果)

(3)直接寫出OB,OC,OF之間的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在中,,以A為圓心,任意長為半徑畫弧分別交ABAC于點MN再分別以MN為圓心,大于的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法中正確的有________

AD的平分線;②;③點DAB的中垂線上;④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在扇形OAB中,∠AOB=110°,半徑OA=18,將扇形OAB沿過點B的直線折疊,點O恰好落在弧AB上的點D處,折痕交OA于點C,則弧AD的長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,ABC中,AC=BC,以BC為直徑的O交AB于E,過點E作EGAC于G,交BC的延長線于F.

(1)求證:AE=BE;

(2)求證:FE是O的切線;

(3)若FE=4,FC=2,求O的半徑及CG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】六一期間,某公園游戲場舉行“迎奧運”活動.有一種游戲的規(guī)則是:在一個裝有個紅球和若干個白球(每個球除顏色外其他相同)的袋中,隨機摸一個球,摸到一個紅球就得到一個奧運福娃玩具.已知參加這種游戲活動為人次,公園游戲場發(fā)放的福娃玩具為個.

求參加一次這種游戲活動得到福娃玩具的概率;

請你估計袋中白球接近多少個?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個以點D為頂點的45°角繞點D旋轉,使角的兩邊分別與AC、BC的延長線相交,交點分別為點E,F,DFAC交于點MDEBC交于點N

1)如圖1,若CE=CF,求證:DE=DF

2)如圖2,在∠EDF繞點D旋轉的過程中:

探究三條線段ABCE,CF之間的數量關系,并說明理由;

CE=4,CF=2,求DN的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點Dm,m+8)在第二象限,點B0,n)在y軸正半軸上,作DAx軸,垂足為A,已知OAOB的值大2,四邊形AOBD的面積為12

1)求mn的值.

2)如圖2CAO的中點,DCAB相交于點EAFBD,垂足為F,求證:AFDE

3)如圖3,點G在射線AD上,且GAGB,HGB延長線上一點,作∠HANy軸于點N,且∠HAN=∠HBO,求NBHB的值.

查看答案和解析>>

同步練習冊答案