【題目】如圖ABCD的對(duì)角線AC,BD交于點(diǎn)O,AC⊥AB,AB=2,且AO∶BO=2∶3.
(1)求AC的長(zhǎng);(2)求ABCD的面積.
【答案】(1)AC=;(2)ABCD的面積=
【解析】
(1)設(shè)AO=2a,BO=3a,平行四邊形性質(zhì)得出AC=4a,BD=6a.在Rt△BAO中,由勾股定理可求出a的值,即可得到AC的長(zhǎng).
(2)根據(jù)ABCD的面積=AB×AC求出即可.
(1)∵AC⊥AB,∴∠BAO=90°.
∵AO∶BO=2∶3,∴設(shè)AO=2a,BO=3a.
∵四邊形ABCD是平行四邊形,∴AC=4a,BD=6a.在Rt△BAO中,由勾股定理得:22+(2a)2=(3a)2,a,AO=CO=2a,∴AC=2OA=.
(2)∵AC⊥AB,∴ABCD的面積=AB×AC=2×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形A′B′C′是三角形ABC經(jīng)過某種變換后得到的圖形.
(1)分別寫出點(diǎn)A和點(diǎn)A′,點(diǎn)B和點(diǎn)B′,點(diǎn)C和點(diǎn)C′的坐標(biāo);
(2)觀察點(diǎn)A和點(diǎn)A′,點(diǎn)B和點(diǎn)B′,點(diǎn)C和點(diǎn)C′的坐標(biāo),用文字語言描述它們的坐標(biāo)之間的關(guān)系 ;
(3)三角形ABC內(nèi)任意一點(diǎn)M的坐標(biāo)為(x,y),點(diǎn)M經(jīng)過這種變換后得到點(diǎn)M′,則點(diǎn)M′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將下面的解答過程補(bǔ)充完整:如圖,點(diǎn)在上,點(diǎn)在上,,.試說明:∥.
解:∵ (已知)
( )
∴ (等量代換)
∴ ______∥_______( )
∴ ( )
∵ (已知)
∴ ( )
∴ ∥ ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),正方形ABCD和正方形CEFG有一公共點(diǎn)C,且B,C,E在同一直線,連接BG,DE.
(1)請(qǐng)你猜想BG,DE的位置關(guān)系和數(shù)量關(guān)系,并說明理由.
(2)若正方形CEFG繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)一個(gè)角度后,如圖(2),BG和DE是否還存在上述關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市決定購(gòu)買A、B兩種樹苗對(duì)某段道路進(jìn)行綠化改造,已知購(gòu)買A種樹苗9棵,B種樹苗4棵,需要700元;購(gòu)買A種樹苗3棵,B種樹苗5棵,則需要380元.
(1)求購(gòu)買A、B兩種樹苗每顆各需多少元?
(2)考慮到綠化效果和資金周轉(zhuǎn),購(gòu)進(jìn)A種樹苗不能少于60棵,且用于購(gòu)買這兩種樹苗的資金不能超過5260元.若購(gòu)進(jìn)這兩種樹苗共100棵,則有哪幾種購(gòu)買方案?哪種方案最省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和直線BC相交于點(diǎn)B,連接AC,點(diǎn)D. E. H分別在AB、AC、BC上,連接DE、DH,F是DH上一點(diǎn),已知∠1+∠3=180°,
(1)求證:∠CEF=∠EAD;
(2)若DH平分∠BDE,∠2=α,求∠3的度數(shù).(用α表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位,每個(gè)小方格的頂點(diǎn)叫格點(diǎn).
(1)畫出△ABC向右平移4個(gè)單位后得到的△A1B1C1;
(2)圖中AC與A1C1的關(guān)系是: _____________.
(3)畫出△ABC的AB邊上的高CD;垂足是D;
(4)圖中△ABC的面積是_______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com