【題目】 若一個(gè)四邊形的兩條對(duì)角線互相垂直且相等,則稱這個(gè)四邊形為奇妙四邊形.如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為奇妙四邊形.根據(jù)奇妙四邊形對(duì)角線互相垂直的特征可得奇妙四邊形的一個(gè)重要性質(zhì):奇妙四邊形的面積等于兩條對(duì)角線乘積的一半.根據(jù)以上信息回答:
(1)矩形 奇妙四邊形(填“是”或“不是”);
(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是奇妙四邊形,若⊙O的半徑為6,∠ BCD=60°.求奇妙四邊形ABCD的面積;
(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是奇妙四邊形作OM⊥BC于M.請(qǐng)猜測(cè)OM與AD的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1)不是;
(2)54;
(3).
【解析】
(1)根據(jù)矩形的性質(zhì)和“奇妙四邊形”的定義進(jìn)行判斷;
(2)連結(jié)OB、OD,作OH⊥BD于H,如圖2,根據(jù)垂徑定理,得到BH=DH,根據(jù)圓周角定理得到∠BOD=2∠BCD=120°,則利用等腰三角形的性質(zhì)得∠OBD=30°,在Rt△OBH中可計(jì)算出,,則,然后根據(jù)奇妙四邊形”的面積等于兩條對(duì)角線乘積的一半求解;
(3)連結(jié)OB、OC、OA、OD,作OE⊥AD于E,如圖3,根據(jù)垂徑定理得到AE=DE,再利用圓周角定理得到∠BOM=∠BAC,∠AOE=∠ABD,再利用等角的余角相等得到∠OBM=∠AOE,則可證明△BOM≌△OAE得到OM=AE,于是有.
解:(1)矩形的對(duì)角線相等但不垂直,
所以矩形不是奇妙四邊形;
故答案為:不是;
(2)
連結(jié)OB、OD,作OH⊥BD于H,如圖2,則BH=DH,
∵∠BOD=2∠BCD=2×60°=120°,
∴在等腰△OBD中,∠OBD=30°,
在Rt△OBH中,∵∠OBH=30°,
∴,
∴
∴
∵四邊形ABCD是奇妙四邊形,
∴,
∴;
(3).
理由如下:
連結(jié)OB、OC、OA、OD,作OE⊥AD于E,如圖3,
∵OE⊥AD,
∴在等腰△AOD中,,
又∵,
∴∠BOM=∠BAC,
同理可得∠AOE=∠ABD,
∵BD⊥AC,
∴∠BAC+∠ABD=90°,
∴∠BOM+∠AOE=90°,
∵∠BOM+∠OBM=90°,
∴∠OBM=∠/span>AOE,
在△BOM和△OAE中
∴,
∴OM=AE,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)與一次函數(shù)在一個(gè)平面直角坐標(biāo)系中.
(1)若二次函數(shù)的圖象頂點(diǎn)在一次函數(shù)上,求的值;
(2)若當(dāng)時(shí),二次函數(shù)的最小值為,求,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于⊙C的發(fā)散點(diǎn)的定義如下:若在射線CP上存在一點(diǎn)P′,滿足CP+CP′=3r,則稱P′為點(diǎn)P關(guān)于⊙C的發(fā)散點(diǎn).下圖為點(diǎn)P及其關(guān)于⊙C的發(fā)散點(diǎn)P′的示意圖.特別地,當(dāng)點(diǎn)P′與圓心C重合時(shí),規(guī)定CP′=0.
根據(jù)上述材料,請(qǐng)你解決以下問(wèn)題:
(1)當(dāng)⊙O的半徑為1時(shí),
①在點(diǎn)關(guān)于⊙O的發(fā)散點(diǎn)的是點(diǎn) ;其對(duì)應(yīng)發(fā)散點(diǎn)的坐標(biāo)是 ;
②點(diǎn)P在直線上,若點(diǎn)P關(guān)于⊙O的發(fā)散點(diǎn)P′存在,且點(diǎn)P′不在x軸上,求點(diǎn)P的橫坐標(biāo)m的取值范圍;
(2)⊙C的圓心C在x軸上,半徑為1,直線與x軸、y軸分別交于點(diǎn)A,B.若線段AB上存在點(diǎn)P,使得點(diǎn)P關(guān)于⊙C的發(fā)散點(diǎn)P′在⊙C的內(nèi)部,請(qǐng)直接寫(xiě)出圓心C的橫坐標(biāo)n的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖1,在正方形ABCD中,E為邊BC上一點(diǎn)(不與點(diǎn)B、C重合),垂直于AE的一條直線MN分別交AB、AE、CD于點(diǎn)M、P、N.判斷線段DN、MB、EC之間的數(shù)量關(guān)系,并說(shuō)明理由.
問(wèn)題探究:在“問(wèn)題情境”的基礎(chǔ)上,
(1)如圖2,若垂足P恰好為AE的中點(diǎn),連接BD,交MN于點(diǎn)Q,連接EQ,并延長(zhǎng)交邊AD于點(diǎn)F.求∠AEF的度數(shù);
(2)如圖3,當(dāng)垂足P在正方形ABCD的對(duì)角線BD上時(shí),連接AN,將△APN沿著AN翻折,點(diǎn)P落在點(diǎn)P'處.若正方形ABCD的邊長(zhǎng)為4 ,AD的中點(diǎn)為S,求P'S的最小值.
問(wèn)題拓展:如圖4,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)M、N分別為邊AB、CD上的點(diǎn),將正方形ABCD沿著MN翻折,使得BC的對(duì)應(yīng)邊B'C'恰好經(jīng)過(guò)點(diǎn)A,C'N交AD于點(diǎn)F.分別過(guò)點(diǎn)A、F作AG⊥MN,FH⊥MN,垂足分別為G、H.若AG=,請(qǐng)直接寫(xiě)出FH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣(x﹣1)2+4與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于另一點(diǎn)D,連結(jié)AC,DE∥AC交邊CB于點(diǎn)E.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求△CDE與△BAC的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,請(qǐng)根據(jù)排列規(guī)律完成下列問(wèn)題:
(1)填寫(xiě)下表:
圖形序號(hào) | 菱形個(gè)數(shù)個(gè) |
| 3 |
| 7 |
| ______ |
| ______ |
|
|
(2)根據(jù)表中規(guī)律猜想,圖n中菱形的個(gè)數(shù)用含n的式子表示,不用說(shuō)理;
(3)是否存在一個(gè)圖形恰好由91個(gè)菱形組成?若存在,求出圖形的序號(hào);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為紀(jì)念建國(guó)70周年,某校舉行班級(jí)歌詠比賽,歌曲有:《我愛(ài)你,中國(guó)》,《歌唱祖國(guó)》,《我和我的祖國(guó)》(分別用字母A,B,C依次表示這三首歌曲).比賽時(shí),將A,B,C這三個(gè)字母分別寫(xiě)在3張無(wú)差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長(zhǎng)先從中隨機(jī)抽取一張卡片,放回后洗勻,再由八(2)班班長(zhǎng)從中隨機(jī)抽取一張卡片,進(jìn)行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國(guó)》的概率是__________;
(2)試用畫(huà)樹(shù)狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)A,C,D三點(diǎn)的圓的圓心為E,過(guò)B,E兩點(diǎn)的圓的圓心為D,如果∠A=60°,那么∠B為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證ΔADE∽ΔABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com