【題目】2020年5月16日,“錢塘江詩路”航道全線開通,一艘游輪從杭州出發(fā)前往衢州,線路如圖1所示.當(dāng)游輪到達建德境內(nèi)的“七里揚帆”景點時,一艘貨輪沿著同樣的線路從杭州出發(fā)前往衢州.已知游輪的速度為20km/h,游輪行駛的時間記為t(h),兩艘輪船距離杭州的路程s(km)關(guān)于t(h)的圖象如圖2所示(游輪在?壳昂蟮男旭偹俣炔蛔儯
(1)寫出圖2中C點橫坐標(biāo)的實際意義,并求出游輪在“七里揚帆”停靠的時長.
(2)若貨輪比游輪早36分鐘到達衢州.問:
①貨輪出發(fā)后幾小時追上游輪?
②游輪與貨輪何時相距12km?
【答案】(1)從杭州出發(fā)前往衢州共用了23h.2h;(2)①貨輪出發(fā)后8小時追上游輪;②21.6h或22.4h時游輪與貨輪何時相距12km
【解析】
(1)根據(jù)圖中信息解答即可.
(2)①求出B,C,D,E的坐標(biāo),利用待定系數(shù)法求解即可.
(3)分兩種情形分別構(gòu)建方程求解即可.
解:(1)C點橫坐標(biāo)的實際意義是游輪從杭州出發(fā)前往衢州共用了23h.
∴游輪在“七里揚帆”?康臅r長=23﹣(420÷20)=23﹣21=2(h).
(2)①280÷20=14h,
∴點A(14,280),點B(16,280),
∵36÷60=0.6(h),23﹣0.6=22.4,
∴點E(22.4,420),
設(shè)BC的解析式為s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,
∴s=20t﹣40(16≤t≤23),
同理由D(14,0),E(22,4,420)可得DE的解析式為s=50t﹣700(14≤t≤22.4),
由題意:20t﹣40=50t﹣700,
解得t=22,
∵22﹣14=8(h),
∴貨輪出發(fā)后8小時追上游輪.
②相遇之前相距12km時,20t﹣4﹣(50t﹣700)=12,解得t=21.6.
相遇之后相距12km時,50t﹣700﹣(20t﹣40)=12,解得t=22.4,
∴21.6h或22.4h時游輪與貨輪何時相距12km.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABC中,∠ACB=45°, D為AC上一點,,連接BD,將ABD沿BD翻折至EBD,點A的對應(yīng)點E點恰好落在邊BC上,延長BC至點F,連接DF,若CF=2,,則DF長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖、圖均是的正方形網(wǎng)格,每個小正方形的頂點稱為格點,的頂點均在格點上,點為邊的中點.分別在圖、圖中的邊上確定點并作出直線,使與相似.
要求:(1)圖、圖中的點位置不同.
(2)只用無刻度的直尺,保留適當(dāng)?shù)淖鲌D痕跡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點,點,與y軸交于點C,且過點.點P、Q是拋物線上的動點.
(1)求拋物線的解析式;
(2)當(dāng)點P在直線OD下方時,求面積的最大值.
(3)直線OQ與線段BC相交于點E,當(dāng)與相似時,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與直線交于點和點,與軸交于點.
(1)求拋物線的解析式及頂點的坐標(biāo);
(2)若向下平移拋物線,使頂點落在軸上,原來的拋物線上的點平移后的對應(yīng)點為.若,求點的坐標(biāo);
(3)在拋物線上是否存在點使的面積是面積的一半?若存在,直接寫出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=4,D為邊AB上一動點(B點除外),以CD為一邊作正方形CDEF,連接BE,則△BDE面積的最大值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是半徑為1的圓O直徑,C是圓上一點,D是BC延長線上一點,過點D的直線交AC于E點,交AB于點F,DF=BF,EA=EF.
(1)求證:△AEF為等邊三角形;
(2)若CF⊥AB,①試說明DC = CF;②求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標(biāo)系中,直線l與x、y軸分別交于點A(4,0)、B(0,)兩點,∠BAO的角平分線交y軸于點D. 點C為直線l上一點,以AC為直徑的⊙G經(jīng)過點D,且與x軸交于另一點E.
(1)求證:y軸是⊙G的切線;
(2)求出⊙G的半徑r,并直接寫出點C的坐標(biāo);
(3)如圖2,若點F為⊙G上的一點,連接AF,且滿足∠FEA=45°,請求出EF的長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國北斗導(dǎo)航裝備的不斷更新,極大方便人們的出行.光明中學(xué)組織學(xué)生利用導(dǎo)航到“金牛山”進行研學(xué)活動,到達A地時,發(fā)現(xiàn)C地恰好在A地正北方向,且距離A地11.46千米.導(dǎo)航顯示路線應(yīng)沿北偏東60°方同走到B地,再沿北偏西37°方向走一段距離才能到達C地,求B,C兩地的距離(精確到1千米).
(參考數(shù)據(jù)sin53°≈0.80,cos53°≈0.60,≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com