【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,且AC=8,DB=6,E為AD的中點,則OE的長為

【答案】2.5
【解析】解:∵菱形ABCD的對角線AC、BD相交于點O,且AC=8,DB=6,

∴AO=4,DO=3,∠AOD=90°,

∴AD=5,

∵E為AD的中點,

∴OE的長為: AD=2.5.

所以答案是:2.5.

【考點精析】掌握三角形中位線定理和菱形的性質是解答本題的根本,需要知道連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ABC=90°,AB=6,BC=8,BAC,ACB的平分線相交于點E,過點E作EFBC交AC于點F,則EF的長為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡(a23的結果為(
A.a5
B.a6
C.a8
D.a9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,其面積標記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2 , …,按照此規(guī)律繼續(xù)下去,則S2017的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在精準扶貧中,某村的李師傅在縣政府的扶持下,去年下半年,他對家里的3個溫室大棚進行修整改造,然后,1個大棚種植香瓜,另外2個大棚種植甜瓜,今年上半年喜獲豐收,現(xiàn)在他家的甜瓜和香瓜已全部售完,他高興地說:“我的日子終于好了”.

最近,李師傅在扶貧工作者的指導下,計劃在農業(yè)合作社承包5個大棚,以后就用8個大棚繼續(xù)種植香瓜和甜瓜,他根據(jù)種植經驗及今年上半年的市場情況,打算下半年種植時,兩個品種同時種,一個大棚只種一個品種的瓜,并預測明年兩種瓜的產量、銷售價格及成本如下:

現(xiàn)假設李師傅今年下半年香瓜種植的大棚數(shù)為x個,明年上半年8個大棚中所產的瓜全部售完后,獲得的利潤為y元.

根據(jù)以上提供的信息,請你解答下列問題:

(1)求出y與x之間的函數(shù)關系式;

(2)求出李師傅種植的8個大棚中,香瓜至少種植幾個大棚?才能使獲得的利潤不低于10萬元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O的半徑長為1,AB、AC是O的兩條弦,且AB=AC,BO的延長線交AC于點D,聯(lián)結OA、OC.

(1)求證:OAD∽△ABD;

(2)當OCD是直角三角形時,求B、C兩點的距離;

(3)記AOB、AOD、COD 的面積分別為S1、S2、S3,如果S2是S1和S3的比例中項,求OD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ab互為相反數(shù),cd互為倒數(shù),則(a+b34cd5_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市出租車收費標準為:起步價(3千米以內或3千米)10元,3千米后每千米價1.8元,則某人乘坐出租車xx3)千米需付費( )元.

A. 10+1.8xB. 3+1.8x

C. 10+1.8x3D. 3+1.8x3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABC中,∠B與∠C的平分線交于點P.
(1)當∠A=112°時,求∠BPC的度數(shù);
(2)當∠A=α時,求∠BPC的度數(shù).

查看答案和解析>>

同步練習冊答案