【題目】如圖,是雙曲線上的點,、兩點的橫坐標(biāo)分別是、,線段的延長線交軸于點,若,則的值為(

A. 2 B. 3 C. 4 D. 6

【答案】B

【解析】

分別過點A、BAFy軸于點F,ADx軸于點D,BGy軸于點G,BEx軸于點E,由于反比例函數(shù)的圖象在第一象限,所以k>0,由點A是反比例函數(shù)圖象上的點可知,,再由A、B兩點的橫坐標(biāo)分別是a、3a可知AD=3BE,故點BAC的三等分點,故DE=2a,CE=a,所以SAOC=S梯形ACOF-SAOF=6,故可得出k的值.

分別過點A.BAFy軸于點F,ADx軸于點D,BGy軸于點G,BEx軸于點E,

k>0,點A是反比例函數(shù)圖象上的點,

A、B兩點的橫坐標(biāo)分別是a、3a

AD=3BE

∴點BAC的三等分點,

DE=2a,CE=a,

SAOC=S梯形ACOFSAOF= 解得k=3.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某經(jīng)銷商從市場得知如下信息:

某品牌空調(diào)扇

某品牌電風(fēng)扇

進(jìn)價(元/臺)

700

100

售價(元/臺)

900

160

他現(xiàn)有40000元資金可用來一次性購進(jìn)該品牌空調(diào)扇和電風(fēng)扇共100臺,設(shè)該經(jīng)銷商購進(jìn)空調(diào)扇臺,空調(diào)扇和電風(fēng)扇全部銷售完后獲得利潤為.

1)求關(guān)于的函數(shù)解析式;

2)利用函數(shù)性質(zhì),說明該經(jīng)銷商如何進(jìn)貨可獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:把RtABCRtDEF按如圖1擺放(點C與點E重合),點B、CE)、F在同一條直線上,∠ACB=∠EDF90°,∠DEF45°,AC8cm,BC6cm,EF9cm,如圖2,△DEF從圖1的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DEAC相交于點Q,連接PQ,設(shè)移動時間為ts)(0t4.5).解答下列問題:

1)用含t的代數(shù)式表示線段AP   

2)當(dāng)t為何值時,點E在∠A的平分線上?

3)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?

4)連接PE,當(dāng)t1s)時,求四邊形APEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則關(guān)于的一元二次方程的根為________;不等式的解集是________;當(dāng)________時,的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點,且與軸相交于負(fù)半軸

問:給出四個結(jié)論:;②;③;④.寫出其中正確結(jié)論的序號(答對得分,少選、錯選均不得分)

問:給出四個結(jié)論:①abc02a+b0;a+c=1a1.寫出其中正確結(jié)論的序號.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四個均由十六個小正方形組成的正方形網(wǎng)格中,各有一個三角形ABC,那么這四個三角形中,不是直角三角形的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中的網(wǎng)格由單位正方形構(gòu)成,△ABC中,A點坐標(biāo)為(2,3),B點坐標(biāo)為(-2,0),C點坐標(biāo)為(0,-1).

1AC的長為______;

2)求證:AC⊥BC;

3)若以A、B、C及點D為頂點的四邊形為平行四邊形ABCD,畫出平行四邊形ABCD,并寫出D點的坐標(biāo)______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系中的點,若點的坐標(biāo)為 (其中為常數(shù),且),則稱點為點的“之雅禮點”.例如:的“之雅禮點”為,即

1)①點 之雅禮點” 的坐標(biāo)為___________;

②若點的“之雅禮點” 的坐標(biāo)為,請寫出一個符合條件的點的坐標(biāo)_________;

2)若點軸的正半軸上,點的“之雅禮點”為點,且為等腰直角三角形,則的值為____________

3)在(2)的條件下,若關(guān)于的分式方程無解,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在課外學(xué)習(xí)時遇到這樣一個問題:

定義:如果二次函數(shù)滿足,,則稱這兩個函數(shù)互為旋轉(zhuǎn)函數(shù)

求函數(shù)旋轉(zhuǎn)函數(shù)

小明是這樣思考的:由函數(shù)可知,,,,根據(jù),,,求出,,,就能確定這個函數(shù)的旋轉(zhuǎn)函數(shù)

請參考小明的方法解決下面問題:

(1)直接寫出函數(shù)旋轉(zhuǎn)函數(shù);

(2)若函數(shù)互為旋轉(zhuǎn)函數(shù),求的值;

(3)已知函數(shù)的圖象與軸交于點A、B兩點(A在B的左邊),與軸交于點C,點A、B、C關(guān)于原點的對稱點分別是A1,B1,C1,試證明經(jīng)過點A1,B1,C1的二次函數(shù)與函數(shù)互為旋轉(zhuǎn)函數(shù)

查看答案和解析>>

同步練習(xí)冊答案