【題目】如圖,、是雙曲線上的點,、兩點的橫坐標(biāo)分別是、,線段的延長線交軸于點,若,則的值為( )
A. 2 B. 3 C. 4 D. 6
【答案】B
【解析】
分別過點A、B作AF⊥y軸于點F,AD⊥x軸于點D,BG⊥y軸于點G,BE⊥x軸于點E,由于反比例函數(shù)的圖象在第一象限,所以k>0,由點A是反比例函數(shù)圖象上的點可知,,再由A、B兩點的橫坐標(biāo)分別是a、3a可知AD=3BE,故點B是AC的三等分點,故DE=2a,CE=a,所以S△AOC=S梯形ACOF-S△AOF=6,故可得出k的值.
分別過點A.B作AF⊥y軸于點F,AD⊥x軸于點D,BG⊥y軸于點G,BE⊥x軸于點E,
∵k>0,點A是反比例函數(shù)圖象上的點,
∴
∵A、B兩點的橫坐標(biāo)分別是a、3a,
∴AD=3BE,
∴點B是AC的三等分點,
∴DE=2a,CE=a,
∴S△AOC=S梯形ACOFS△AOF= 解得k=3.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)銷商從市場得知如下信息:
某品牌空調(diào)扇 | 某品牌電風(fēng)扇 | |
進(jìn)價(元/臺) | 700 | 100 |
售價(元/臺) | 900 | 160 |
他現(xiàn)有40000元資金可用來一次性購進(jìn)該品牌空調(diào)扇和電風(fēng)扇共100臺,設(shè)該經(jīng)銷商購進(jìn)空調(diào)扇臺,空調(diào)扇和電風(fēng)扇全部銷售完后獲得利潤為元.
(1)求關(guān)于的函數(shù)解析式;
(2)利用函數(shù)性質(zhì),說明該經(jīng)銷商如何進(jìn)貨可獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:把Rt△ABC和Rt△DEF按如圖1擺放(點C與點E重合),點B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm,如圖2,△DEF從圖1的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).解答下列問題:
(1)用含t的代數(shù)式表示線段AP= ;
(2)當(dāng)t為何值時,點E在∠A的平分線上?
(3)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?
(4)連接PE,當(dāng)t=1(s)時,求四邊形APEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,則關(guān)于的一元二次方程的根為________;不等式的解集是________;當(dāng)________時,隨的增大而減。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點和,且與軸相交于負(fù)半軸.
第問:給出四個結(jié)論:①;②;③;④.寫出其中正確結(jié)論的序號(答對得分,少選、錯選均不得分)
第 問:給出四個結(jié)論:①abc<0;②2a+b>0;③a+c=1;④a>1.寫出其中正確結(jié)論的序號.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四個均由十六個小正方形組成的正方形網(wǎng)格中,各有一個三角形ABC,那么這四個三角形中,不是直角三角形的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中的網(wǎng)格由單位正方形構(gòu)成,△ABC中,A點坐標(biāo)為(2,3),B點坐標(biāo)為(-2,0),C點坐標(biāo)為(0,-1).
(1)AC的長為______;
(2)求證:AC⊥BC;
(3)若以A、B、C及點D為頂點的四邊形為平行四邊形ABCD,畫出平行四邊形ABCD,并寫出D點的坐標(biāo)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中的點,若點的坐標(biāo)為 (其中為常數(shù),且),則稱點為點的“之雅禮點”.例如:的“之雅禮點”為,即.
(1)①點的 “之雅禮點” 的坐標(biāo)為___________;
②若點的“之雅禮點” 的坐標(biāo)為,請寫出一個符合條件的點的坐標(biāo)_________;
(2)若點在軸的正半軸上,點的“之雅禮點”為點,且為等腰直角三角形,則的值為____________;
(3)在(2)的條件下,若關(guān)于的分式方程無解,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在課外學(xué)習(xí)時遇到這樣一個問題:
定義:如果二次函數(shù)與滿足,,,則稱這兩個函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求函數(shù)的“旋轉(zhuǎn)函數(shù)”.
小明是這樣思考的:由函數(shù)可知,,,,根據(jù),,,求出,,,就能確定這個函數(shù)的“旋轉(zhuǎn)函數(shù)”.
請參考小明的方法解決下面問題:
(1)直接寫出函數(shù)的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)與互為“旋轉(zhuǎn)函數(shù)”,求的值;
(3)已知函數(shù)的圖象與軸交于點A、B兩點(A在B的左邊),與軸交于點C,點A、B、C關(guān)于原點的對稱點分別是A1,B1,C1,試證明經(jīng)過點A1,B1,C1的二次函數(shù)與函數(shù)互為“旋轉(zhuǎn)函數(shù)”。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com