【題目】如圖,為的中線,點在的延長線上的點,連接,且,過點作于點,連接,若,則的長為________________.
【答案】3
【解析】
過點A作AF⊥EF于點F,通過證明△AFD≌△BHD(AAS),Rt△CAF≌ Rt△EBH(HL),得到BH= HD+DF=2DH,又因為 為的中線,,所以S△BHD=S△BHA=×18=9=×HD·HB=×HD·2HD,從而求解.
解:如圖:過點A作AF⊥EF于點F,
∵為的中線,,
∴AD=BD, ∠AFD=∠BHD=90°,
又∵∠ADF=∠BDH,
∴△AFD≌△BHD(AAS),
∴AF=BH,FD=HD,
∵在Rt△CAF和 Rt△EBH中,
∴Rt△CAF≌ Rt△EBH(HL)
∴EH=CF,
∴EH-CH=CF-CH,即EC=HF
∵BH=EC,EC=HF=HD+DF,HD=DF
∴BH= HD+DF=2DH,
∵為的中線,,
∴S△BHD=S△BHA=×18=9=×HD·HB=×HD·2HD,
解得:HD=3.
故答案為:3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是菱形,AD=5,過點D作AB的垂線DH,垂足為H,交對角線AC于M,連接BM,且AH=3.
(1)求證:DM=BM;
(2)求MH的長;
(3)如圖2,動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運(yùn)動,設(shè)△PMB的面積為S(S≠0),點P的運(yùn)動時間為t秒,求S與t之間的函數(shù)關(guān)系式;
(4)在(3)的條件下,當(dāng)點P在邊AB上運(yùn)動時是否存在這樣的 t值,使∠MPB與∠BCD互為余角,若存在,則求出t值,若不存,在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC⊥BD時,它是菱形
C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC,∠C=90°,點D為AB上的一點,以AD為直徑的⊙O與BC相切于點E,連接AE.
(1)求證:AE平分∠BAC;
(2)若AC=8,OB=18,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“安全教育平臺”是中國教育學(xué)會為方便學(xué)長和學(xué)生參與安全知識活動、接受安全提醒的一種應(yīng)用軟件.某校為了了解家長和學(xué)生參與“防溺水教育”的情況,在本校學(xué)生中隨機(jī)抽取部分學(xué)生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:A.僅學(xué)生自己參與;B.家長和學(xué)生一起參與;
C.僅家長自己參與; D.家長和學(xué)生都未參與.
請根據(jù)圖中提供的信息,解答下列問題:
(1)在這次抽樣調(diào)查中,共調(diào)查了________名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計圖,并在扇形統(tǒng)計圖中計算C類所對應(yīng)扇形的圓心角的度數(shù);
(3)根據(jù)抽樣調(diào)查結(jié)果,估計該校2000名學(xué)生中“家長和學(xué)生都未參與”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,O是銳角三角形ABC內(nèi)一點,∠AOB=∠BOC=∠COA=120°,P是△ABC內(nèi)不同于O的另一點,△A′BO′、△A′BP′分別由△AOB、△APB旋轉(zhuǎn)而得,旋轉(zhuǎn)角都為60°,則下列結(jié)論中正確的有( ).(提示:有一個角是60°的等腰三角形是等邊三角形)
①△O′BO為等邊三角形,且A′、O′、O、C在一條直線上.
②A′O′+O′O=AO+BO. ③A′P′+P′P=PA+PB.
④PA+PB+PC>AO+BO+CO.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,邊長為a的正方形發(fā)生形變后成為邊長為a的菱形,如果這個菱形的一組對邊之間的距離為h,我們把的值叫做這個菱形的“形變度”.例如,當(dāng)形變后的菱形是如圖2形狀(被對角線BD分成2個等邊三角形),則這個菱形的“形變度”為2:.如圖3,正方形由16個邊長為1的小正方形組成,形變后成為菱形,△AEF(A、E、F是格點)同時形變?yōu)?/span>△A′E′F′,若這個菱形的“形變度”k=,則S△A′E′F′=__
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD頂點A的坐標(biāo)為(0,4),B點在x軸上,對角線AC,BD交于點M,OM=6,則點C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于A、C兩點,點D在⊙O上,∠A=∠B=30°.
(1)求證:BD是⊙O的切線;
(2)若點N在⊙O上,且DN⊥AB,垂足為M,NC=10,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com