【題目】如圖,線(xiàn)段AB經(jīng)過(guò)圓心O,交⊙O于A、C兩點(diǎn),點(diǎn)D在⊙O上,∠A=∠B=30°.
(1)求證:BD是⊙O的切線(xiàn);
(2)若點(diǎn)N在⊙O上,且DN⊥AB,垂足為M,NC=10,求AD的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)AD=10.
【解析】試題分析:(1)連接OD,由切線(xiàn)的判定定理可證得OD⊥BD,則BD是⊙O的切線(xiàn);
(2)連接CD,由垂徑定理可得:CD=CN=10,在直角三角形ADC中,由勾股定理可求出AD的長(zhǎng).
試題解析:(1)連接OD,
∵∠A=∠B=30°,OD=OC,
∴∠A=∠ADO=30°,
∴∠DOC=60°,
∴∠ODB=90°,
即OD⊥BD,
∴BD是⊙O的切線(xiàn);
(2)連接CD,
∵DN⊥AB,
∴弧DC=弧CN,
∴CD=CN=10,
∵AC是直徑,
∴∠ADC=90°,
∵∠A=30°,
∴AC=20,
∴AD=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的中線(xiàn),點(diǎn)在的延長(zhǎng)線(xiàn)上的點(diǎn),連接,且,過(guò)點(diǎn)作于點(diǎn),連接,若,則的長(zhǎng)為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2+bx﹣2(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線(xiàn)BD交拋物線(xiàn)于點(diǎn)D,并且D(2,3),tan∠DBA=.
(1)求拋物線(xiàn)的解析式;
(2)已知點(diǎn)M為拋物線(xiàn)上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C、A,求四邊形BMCA面積的最大值;
(3)在(2)中四邊形BMCA面積最大的條件下,過(guò)點(diǎn)M作直線(xiàn)平行于y軸,在這條直線(xiàn)上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線(xiàn)AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長(zhǎng)BC至點(diǎn)D,使DC=CB,延長(zhǎng)DA與⊙O的另一個(gè)交點(diǎn)為E,連接AC,CE.
(1)求證:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】6張如圖1的長(zhǎng)為a,寬為b(a>b)的小長(zhǎng)方形紙片,按圖2方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長(zhǎng)度變化時(shí),按照同樣的放置方式,S始終保持不變,則a,b滿(mǎn)足( )
A. a=2b B. a=3b C. a=4b D. a=b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A1的坐標(biāo)為(0,1),直線(xiàn)1為y=x.過(guò)點(diǎn)A1作A1B1⊥y軸交直線(xiàn)1于點(diǎn)B1,過(guò)點(diǎn)B1作A2B1⊥1交y軸于點(diǎn)A2;過(guò)點(diǎn)A2作A2B2⊥y軸交直線(xiàn)1于點(diǎn)B2,過(guò)點(diǎn)B2作A3B2⊥1交y軸于點(diǎn)A3,……,則AnBn的長(zhǎng)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=kx+b經(jīng)過(guò)點(diǎn)A(-5,0),B(-1,4)
(1)求直線(xiàn)AB的表達(dá)式;
(2)求直線(xiàn)CE:y=-2x-4與直線(xiàn)AB及y軸圍成圖形的面積;
(3)根據(jù)圖象,直接寫(xiě)出關(guān)于x的不等式kx+b>-2x-4的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,BE∥CF,且BE=CF,若BE、CF分別平分∠ABC和∠BCD.
(1)請(qǐng)判斷AB與CD是否平行?并說(shuō)明你的理由.
(2)CE、BF相等嗎?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com