【題目】ABC中,ADBC邊上的高,AE是角平分線,∠B=30°,∠C=70°,求∠CAD和∠DAE的度數(shù).

【答案】CAD=20°, DAE=20°

【解析】

RtACD中,利用直角三角形兩銳角互余即可求出∠CAD;
根據(jù)三角形的內(nèi)角和等于180°列式求出∠BAC,再根據(jù)角平分線的定義求出∠CAE,然后列式計算即可求出∠DAE

解:∵ADBC邊上的高

∴∠ADC=90°

Rt△ADC中,∠C=70°

∴∠CAD=90°-∠C=90°-70°=20°

△ABC

∵∠B=30°∠C=70°

∴∠BAC=180°-∠B-∠C=180°-30°-70°=80°

∵AE平分∠BAC

∴∠CAE=∠BAC=×80°=40°

∴∠DAE=∠CAE∠CAD=40°20°=20°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某家電商場計劃用9萬元從生產(chǎn)廠家購進50臺電視機,已知該廠家生產(chǎn)3種不同型號的電視機,出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.

1)若家電商場同時購進兩種不同型號的電視機共50臺,用去9萬元,請你計算一下商場有哪幾種進貨方案?

2)若商場銷售一臺A種電視機可獲利150元,銷售一臺B種電視機可獲利200元,銷售一臺C種電視機可獲利250元,在同時購進兩種不同型號的電視機方案中,為了使銷售時獲利最多,應選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把△ABC紙片沿DE折疊,當點A落在四邊形BCDE內(nèi)時,∠A與∠1+∠2之間有始終不變的關系是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

閱讀理解:數(shù)軸是學習有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點表示,這樣能夠運用數(shù)形結合的方法解決一些問題.例如,兩個有理數(shù)在數(shù)軸上對應的點之間的距離可以用較大數(shù)與較小數(shù)的差來表示.例如:

在數(shù)軸上,有理數(shù)31對應的兩點之間的距離為;

在數(shù)軸上,有理數(shù)3與-2對應的兩點之間的距離為;

在數(shù)軸上,有理數(shù)-3與-2對應的兩點之間的距離為.

解決問題:如圖所示,已知點表示的數(shù)為-3,點表示的數(shù)為-1,點表示的數(shù)為2.

1)點和點之間的距離為______.

2)若數(shù)軸上動點表示的數(shù)為,當時,點和點之間的距離可表示為______;當時,點和點之間的距離可表示為______.

3)若數(shù)軸上動點表示的數(shù)為,點在點和點之間,點和點之間的距離表示為,點和點之間的距離表示為,求(用含的代數(shù)式表示并進行化簡)

4)若數(shù)軸上動點表示的數(shù)為-2,將點向右移動19個單位長度,再向左移動23個單位長度終點為,那么兩點之間的距離是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC在x軸正半軸上,點A在第一象限,延長AB交y軸負半軸于點D,延長CA到點E,使AE=AC,雙曲線y= (x>0)的圖象過點E.若△BCD的面積為2 ,則k的值為( )

A.4
B.4
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知長方形紙片ABCD,點E在邊AB上,點FG在邊CD上,連接EFEG.將∠BEG對折,點B落在直線EG上的點B′處,得折痕EM;將∠AEF對折,點A落在直線EF上的點A′處,得折痕EN

1)如圖1,若點F與點G重合,求∠MEN的度數(shù);

2)如圖2,若點G在點F的右側,且∠FEG30°,求∠MEN的度數(shù);

3)若∠MENα,請直接用含α的式子表示∠FEG的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點B在線段AC上,點D在線段AB上.

1)如圖1,若AB=6cm,BC=4cm,D為線段AC的中點,求線段DB的長度;

2)如圖2,若BD=AB=CD,E為線段AB的中點,EC=12cm,求線段AC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的三個頂點都在格點上,點的坐標為

1)畫出關于軸對稱的,并寫出點的坐標   

2)畫出繞原點旋轉(zhuǎn)后得到的,并寫出點的坐標  

3是否為直角三角形?答   (填是或者不是).

4)利用格點圖,畫出邊上的高,并求出的長,   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點D在AB的延長線上,DC切⊙O于點C,若∠A=25°,則∠D等于( )

A.20°
B.30°
C.40°
D.50°

查看答案和解析>>

同步練習冊答案