【題目】平面上,將邊長(zhǎng)相等的正三角形、正方形、正五邊形、正六邊形的一邊重合并疊在一起,如圖,則∠3+∠1﹣∠2=

【答案】24°
【解析】解:正三角形的每個(gè)內(nèi)角是: 180°÷3=60°,
正方形的每個(gè)內(nèi)角是:
360°÷4=90°,
正五邊形的每個(gè)內(nèi)角是:
(5﹣2)×180°÷5
=3×180°÷5
=540°÷5
=108°,
正六邊形的每個(gè)內(nèi)角是:
(6﹣2)×180°÷6
=4×180°÷6
=720°÷6
=120°,
則∠3+∠1﹣∠2
=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)
=30°+12°﹣18°
=24°.
故答案為:24°.
首先根據(jù)多邊形內(nèi)角和定理,分別求出正三角形、正方形、正五邊形、正六邊形的每個(gè)內(nèi)角的度數(shù)是多少,然后分別求出∠3、∠1、∠2的度數(shù)是多少,進(jìn)而求出∠3+∠1﹣∠2的度數(shù)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班級(jí)45名同學(xué)自發(fā)籌集到1700元資金,用于初中畢業(yè)時(shí)各項(xiàng)活動(dòng)的經(jīng)費(fèi).通過(guò)商議,決定拿出不少于544元但不超過(guò)560元的資金用于請(qǐng)專(zhuān)業(yè)人士拍照,其余資金用于給每名同學(xué)購(gòu)買(mǎi)一件文化衫或一本制作精美的相冊(cè)作為紀(jì)念品.已知每件文化衫28元,每本相冊(cè)20元.
(1)適用于購(gòu)買(mǎi)文化衫和相冊(cè)的總費(fèi)用為W元,求總費(fèi)用W(元)與購(gòu)買(mǎi)的文化衫件數(shù)t(件)的函數(shù)關(guān)系式.
(2)購(gòu)買(mǎi)文化衫和相冊(cè)有哪幾種方案?為了使拍照的資金更充足,應(yīng)選擇哪種方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開(kāi)設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完成;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,一元二次方程x2=﹣1沒(méi)有實(shí)數(shù)根,即不存在一個(gè)實(shí)數(shù)的平方等于﹣1,若我們規(guī)定一個(gè)新數(shù)i,使其滿足i2=﹣1(即x2=﹣1方程有一個(gè)根為i),并且進(jìn)一步規(guī)定:一切實(shí)數(shù)可以與新數(shù)進(jìn)行四則運(yùn)算,且原有的運(yùn)算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2i=(﹣1)i,i4=(i22=(﹣1)2=1,從而對(duì)任意正整數(shù)n,我們可得到i4n+1=i4ni=(i4ni,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么,i+i2+i3+i4+…+i2016+i2017的值為( )
A.0
B.1
C.﹣1
D.i

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線l交x軸于點(diǎn)C,交y軸于點(diǎn)D,與反比例函數(shù)y= (k>0)的圖象交于兩點(diǎn)A、E,AG⊥x軸,垂足為點(diǎn)G,SADG=3

(1)k=
(2)求證:AD=CE;
(3)如圖2,若點(diǎn)E為平行四邊形OABC的對(duì)角線AC的中點(diǎn),求平行四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過(guò)A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.

(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請(qǐng)問(wèn)△PBC的面積S能否取得最大值?若能,請(qǐng)求出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)問(wèn)題進(jìn)行證明:
(1)已知:如圖,在正方形ABCD中,點(diǎn)E在邊CD上,AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P,求證:AP=BQ.
(2)如圖,已知AB是⊙O的直徑,AC是⊙O的弦,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D且∠A=∠D.求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,tanA= ,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H,給出如下幾個(gè)結(jié)論:(1)△AED≌△DFB;(2)CG與BD一定不垂直;(3)∠BGE的大小為定值;(4)S四邊形BCDG= CG2;其中正確結(jié)論的序號(hào)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式組的解集在數(shù)軸上表示正確的是(  )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案