【題目】如圖,在平行四邊形中,,垂足為點(diǎn),將平行四邊形折疊,使點(diǎn)落在點(diǎn)的位置,點(diǎn)落在點(diǎn)的位置,折痕為.

1)求證:;

2)若,求的度數(shù);

3)連接,求證:四邊形是矩形.

【答案】1)見解析(260°(3)見解析

【解析】

1)根據(jù)折疊的性質(zhì),得到∠A=GAD=DG,再根據(jù)軸對(duì)稱的性質(zhì)即可得到AE=FG,進(jìn)而運(yùn)用SAS判定ADE≌△GDF;

2)根據(jù)BD=AB,可得sinA=,進(jìn)而得到∠A=30°,再根據(jù)DF=CF=FG,即可得到∠FDG=DGF=A=30°,即可得出∠CFG=FDG+DGF=60°;

3)連接CG,根據(jù)BC=DG,BCDG,可得四邊形BCGD是平行四邊形,再根據(jù)∠CBD=90°,即可得到四邊形BCGD是矩形.

1)∵四邊形ABCD是平行四邊形,

AB=CD,AD=BC,ADBC,∠A=C,

由折疊可知,BC=DGCF=FG,∠G=C,EF垂直平分BD

∴∠A=G,AD=DG,

又∵ADBD

EFADBC,

∴點(diǎn)EF分別平分AB、CD,

AE=BE=AB=CD=CF=DF

AE=FG

∴△ADE≌△GDF;

2)∵AE=BDAE=BE=AB

BD=AB,

sinA=,

∴∠A=30°,

DF=CF=FG,

∴∠FDG=DGF=A=30°,

∴∠CFG=FDG+DGF=60°;

3)如圖,連接CG

由折疊可知,BC=DG,BCDG

∴四邊形BCGD是平行四邊形,

ADBD,ADBC,

BCBD,

∴∠CBD=90°,

∴四邊形BCGD是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某翻譯團(tuán)為成為2022年冬奧會(huì)志愿者做準(zhǔn)備,該翻譯團(tuán)一共有五名翻譯,其中一名只會(huì)翻譯西班牙語(yǔ),三名只會(huì)翻譯英語(yǔ),還有一名兩種語(yǔ)言都會(huì)翻譯.

1)求從這五名翻譯中隨機(jī)挑選一名會(huì)翻譯英語(yǔ)的概率;

2)若從這五名翻譯中隨機(jī)挑選兩名組成一組,請(qǐng)用樹狀圖或列表的方法求該紐能夠翻譯上述兩種語(yǔ)言的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組為測(cè)量一棵古樹BH和教學(xué)樓CG的高,先在A處用高1.5米的測(cè)角儀測(cè)得古樹頂端H的仰角∠HDE37°,此時(shí)教學(xué)樓頂端G恰好在視線DH上,再向前走8米到達(dá)B處,又測(cè)得教學(xué)樓頂端G的仰角∠GEF45°,點(diǎn)A、B、C三點(diǎn)在同一水平線上.

1)求古樹BH的高;

2)計(jì)算教學(xué)樓CG的高度.

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,其盤面分為4等份,在每一等份分別標(biāo)有對(duì)應(yīng)的數(shù)字2,3,45.小明打算自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤10次,現(xiàn)已經(jīng)轉(zhuǎn)動(dòng)了8次,每一次停止后,小明將指針?biāo)笖?shù)字記錄如下:

次數(shù)

1

2

3

4

5

6

7

8

9

10

數(shù)字

3

5

2

3

3

4

3

5

1)求前8次的指針?biāo)笖?shù)字的平均數(shù).

2)小明繼續(xù)自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,判斷是否可能發(fā)生“這10次的指針?biāo)笖?shù)字的平均數(shù)不小于3.3,且不大于3.5”的結(jié)果?若有可能,計(jì)算發(fā)生此結(jié)果的概率,并寫出計(jì)算過(guò)程;若不可能,說(shuō)明理由.(指針指向盤面等分線時(shí)為無(wú)效轉(zhuǎn)次.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算張老師在黑板上寫了三個(gè)算式,希望同學(xué)們認(rèn)真觀察,發(fā)現(xiàn)規(guī)律

請(qǐng)你結(jié)合這些算式,解答下列問題:

(1)請(qǐng)你再寫出另外兩個(gè)符合上述規(guī)律的算式;

(2)驗(yàn)證規(guī)律:設(shè)兩個(gè)連續(xù)奇數(shù)為2n+1,2n–1(其中n為正整數(shù)),則它們的平方差是8的倍數(shù);

(3)拓展延伸:兩個(gè)連續(xù)偶數(shù)的平方差是8的倍數(shù),這個(gè)結(jié)論正確嗎?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生的課外閱讀情況,七(1)班針對(duì)你最喜愛的課外閱讀書目進(jìn)行調(diào)查(每名學(xué)生必須選一類且只能選一類閱讀書目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.

男、女生所選類別人數(shù)統(tǒng)計(jì)表

類別

男生(人)

女生(人)

文學(xué)類

12

8

史學(xué)類

5

科學(xué)類

6

5

哲學(xué)類

2

根據(jù)以上信息解決下列問題

1      

2)扇形統(tǒng)計(jì)圖中科學(xué)類所對(duì)應(yīng)扇形圓心角度數(shù)為   ;

3)從選哲學(xué)類的學(xué)生中,隨機(jī)選取兩名學(xué)生參加學(xué)校團(tuán)委組織的辯論賽,請(qǐng)用樹狀圖或列表法求出所選取的兩名學(xué)生都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙施工隊(duì)分別從兩端修一段長(zhǎng)度為380米的公路.在施工過(guò)程中,乙隊(duì)曾因技術(shù)改進(jìn)而停工一天,之后加快了施工進(jìn)度并與甲隊(duì)共同按期完成了修路任務(wù).下表是根據(jù)每天工程進(jìn)度繪制而成的.

施工時(shí)間/

1

2

3

4

5

6

7

8

9

累計(jì)完成施工量/

35

70

105

140

160

215

270

325

380

下列說(shuō)法錯(cuò)誤的是( )

A. 甲隊(duì)每天修路20

B. 乙隊(duì)第一天修路15

C. 乙隊(duì)技術(shù)改進(jìn)后每天修路35

D. 前七天甲,乙兩隊(duì)修路長(zhǎng)度相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點(diǎn)(AB的左側(cè)),與y軸交于點(diǎn)N,過(guò)A點(diǎn)的直線ly軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,已知P點(diǎn)為拋物線上一動(dòng)點(diǎn)(不與A、D重合).

1)求拋物線和直線l的解析式;

2)當(dāng)點(diǎn)P在直線l上方的拋物線上時(shí),過(guò)P點(diǎn)作PEx軸交直線l于點(diǎn)E,作軸交直線l于點(diǎn)F,求的最大值;

3)設(shè)M為直線l上的點(diǎn),探究是否存在點(diǎn)M,使得以點(diǎn)N、C,M、P為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C為半圓的中點(diǎn),AB是直徑,點(diǎn)D是半圓上一點(diǎn),AC,BD交于點(diǎn)E.若AD=1,BD=7,則CE的長(zhǎng)為_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案