【題目】如圖1,在平面直角坐標(biāo)系中,直線分別交軸,軸于、兩點(diǎn),已知點(diǎn)坐標(biāo),點(diǎn)在直線上,橫坐標(biāo)為,點(diǎn)是軸正半軸上的一個動點(diǎn),連結(jié),以為直角邊在右側(cè)構(gòu)造一個等腰,且.
(1)求直線的解析式以及點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)的橫坐標(biāo)為,試用含的代數(shù)式表示點(diǎn)的坐標(biāo);
(3)如圖2,連結(jié),,請直接寫出使得周長最小時,點(diǎn)的坐標(biāo).
【答案】(1),;(2) ;(3).
【解析】
(1)用待定系數(shù)法求出直線的解析式后,將x=3代入即可;
(2)作軸于點(diǎn),軸于點(diǎn),根據(jù)AAS可證,即可得E點(diǎn)坐標(biāo);
(3)將周長最小轉(zhuǎn)化為和最小問題,利用對稱性進(jìn)行解答即可.
解:(1)把代入中,
得,解得,
,
把代入,得,
(2)作軸于點(diǎn),軸于點(diǎn),
是等腰,
,,
,且,
,,
,
(3)∵
∴E在函數(shù)y=x-7圖像上運(yùn)動
作C關(guān)于直線y=x-7的對稱點(diǎn) ,連接交 直線y=x-7于F,則 ,F為的中點(diǎn),
∴當(dāng)三點(diǎn)共線時 周長最小,
∴周長最小為:
∴設(shè)
把C(3,4)代入得:4=-3+b
解得:b=7
∴
∵
∴
∴F(7,0)
∵F為的中點(diǎn),C(3,4),F(7,0)
∴
連接 ,設(shè)直線的解析式為:
把代入得:
解得
∴
∴
解得
∴.
∴周長最小時:
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形中,,,為邊上的高,,點(diǎn)為邊上的一動點(diǎn),,分別為點(diǎn)關(guān)于直線,的對稱點(diǎn),連接,則線段長度的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D,E,F(xiàn)分別是△ABC三邊的中點(diǎn),則下列判斷錯誤的是( )
A. 四邊形AEDF一定是平行四邊形 B. 若AD平分∠A,則四邊形AEDF是正方形
C. 若AD⊥BC,則四邊形AEDF是菱形 D. 若∠A=90°,則四邊形AEDF是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩位老師同住一小區(qū),該小區(qū)與學(xué)校相距米.甲從小區(qū)步行去學(xué)校,出發(fā)分鐘后乙再出發(fā),乙從小區(qū)先騎公共自行車,騎行若干米到達(dá)還車點(diǎn)后,立即步行走到學(xué)校.已知乙騎車的速度為米/分,甲步行的速度比乙步行的速度每分鐘快米.設(shè)甲步行的時間為(分),圖1中線段與折線分別表示甲、乙離小區(qū)的路程(米)與甲步行時間(分)的函數(shù)關(guān)系的圖象;圖2表示甲、乙兩人之間的距離(米)與甲步行時間 (分)的函數(shù)關(guān)系的圖象(不完整),根據(jù)圖1和圖2中所給的信息,解答下列問題:
(1)求甲步行的速度和乙出發(fā)時甲離開小區(qū)的路程;
(2)求直線的解析式;
(3)在圖2中,畫出當(dāng)時,關(guān)于的函數(shù)的大致圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列一組圖形中點(diǎn)的個數(shù),其中第一個圖形中共有4個點(diǎn),第2個圖形中共有10個點(diǎn),第3個圖形中共有19個點(diǎn),…按此規(guī)律第6個圖形中共有點(diǎn)的個數(shù)是( 。
A.38B.46C.61D.64
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)
(2)(﹣a6x5y4)÷(﹣3a2xy2)×(﹣ax)2
(3)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.
(Ⅰ)△ABC的面積等于_____;
(Ⅱ)若四邊形DEFG是正方形,且點(diǎn)D,E在邊CA上,點(diǎn)F在邊AB上,點(diǎn)G在邊BC上,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點(diǎn)E,點(diǎn)G,并簡要說明點(diǎn)E,點(diǎn)G的位置是如何找到的(不要求證明)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若中學(xué)生體質(zhì)健康綜合評定成績?yōu)?/span>x分,滿分為100分.規(guī)定:85≤x≤100為A級,75≤x<85為B級,60≤x<75為C級,x<60為D級.現(xiàn)隨機(jī)抽取某中學(xué)部分學(xué)生的綜合評定成績,整理繪制成如下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中的信息,解答下列問題:
(1)在這次調(diào)查中,一共抽取了 名學(xué)生;
(2)a= %;C級對應(yīng)的圓心角為 度.
(3)補(bǔ)全條形統(tǒng)計圖;
(4)若該校共有2000名學(xué)生,請你估計該校D級學(xué)生有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com