【題目】已知如圖,矩形OABC的長OA=,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點在拋物線y=﹣x2+bx+c上,求b,c的值,并說明點C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點D,與x軸相交于另外一點E,若點M是x軸上的點,N是y軸上的點,以點E、M、D、N為頂點的四邊形是平行四邊形,試求點M、N的坐標.
【答案】(1)∠PCB=30°.(2),當x=0時,y=1,故C(0,1)在拋物線的圖象上.(3)M(﹣,0),N(0,1).
【解析】
試題分析:(1)根據(jù)OC、OA的長,可求得∠OCA=∠ACP=60°(折疊的性質(zhì)),∠BCA=∠OAC=30°,由此可判斷出∠PCB的度數(shù).
(2)過P作PQ⊥OA于Q,在Rt△PAQ中,易知PA=OA=3,而∠PAO=2∠PAC=60°,即可求出AQ、PQ的長,進而可得到點P的坐標,將P、A坐標代入拋物線的解析式中,即可得到b、c的值,從而確定拋物線的解析式,然后將C點坐標代入拋物線的解析式中進行驗證即可.
(3)根據(jù)拋物線的解析式易求得C、D、E點的坐標,然后分兩種情況考慮:
①DE是平行四邊形的對角線,由于CD∥x軸,且C在y軸上,若過D作直線CE的平行線,那么此直線與x軸的交點即為M點,而N點即為C點,D、E的坐標已經(jīng)求得,結(jié)合平行四邊形的性質(zhì)即可得到點M的坐標,而C點坐標已知,即可得到N點的坐標;
②DE是平行四邊形的邊,由于A在x軸上,過A作DE的平行線,與y軸的交點即為N點,而M點即為A點;易求得∠DEA的度數(shù),即可得到∠NAO的度數(shù),已知OA的長,通過解直角三角形可求得ON的值,從而確定N點的坐標,而M點與A點重合,其坐標已知;
同理,由于C在y軸上,且CD∥x軸,過C作DE的平行線,也可找到符合條件的M、N點,解法同上.
試題解析:(1)在Rt△OAC中,OA=,OC=1,則∠OAC=30°,∠OCA=60°;
根據(jù)折疊的性質(zhì)知:OA=AP=,∠ACO=∠ACP=60°;
∵∠BCA=∠OAC=30°,且∠ACP=60°,
∴∠PCB=30°.
(2)過P作PQ⊥OA于Q;
Rt△PAQ中,∠PAQ=60°,AP=;
∴OQ=AQ=,PQ=,
所以P(,);
將P、A代入拋物線的解析式中,得:,
解得;
即y=﹣x2+x+1;
當x=0時,y=1,故C(0,1)在拋物線的圖象上.
(3)①若DE是平行四邊形的對角線,點C在y軸上,CD平行x軸,
∴過點D作DM∥CE交x軸于M,則四邊形EMDC為平行四邊形,
把y=1代入拋物線解析式得點D的坐標為(,1)
把y=0代入拋物線解析式得點E的坐標為(﹣,0)
∴M(,0);N點即為C點,坐標是(0,1);
②若DE是平行四邊形的邊,
過點A作AN∥DE交y軸于N,四邊形DANE是平行四邊形,
∴DE=AN===2,
∵tan∠EAN==,
∴∠EAN=30°,
∵∠DEA=∠EAN,
∴∠DEA=30°,
∴M(,0),N(0,﹣1);
同理過點C作CM∥DE交y軸于N,四邊形CMDE是平行四邊形,
∴M(﹣,0),N(0,1).
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. “367人中必有2人的生日是同一天”是必然事件
B. 了解一批燈泡的使用壽命采用全面調(diào)查
C. 一組數(shù)據(jù)6,5,3,5,4的眾數(shù)是5,中位數(shù)是3
D. 一組數(shù)據(jù)10,11,12,9,8的平均數(shù)是10,方差是1.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標平面內(nèi),二次函數(shù)圖象的頂點為A(1,﹣4),且過點B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小山崗的斜坡AC的坡角α=45°,在與山腳C距離200米的D處,測得山頂A的仰角為26.6°,小山崗的高AB約為( ).(結(jié)果取整數(shù),參考數(shù)據(jù):sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)
A.164m B.178m C.200m D.1618m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于點G,交BE于點H,下面說法正確的是( )
① △ABE的面積與△BCE的面積相等;② ∠AFG=∠AGF;③ ∠FAG=2∠ACF;④ BH=CH
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com