【題目】如圖在平行四邊形ABCD中,CD=2AD,BE⊥AD,點(diǎn)F為DC中點(diǎn),連接EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確的有_____.
【答案】①②③④
【解析】
延長EF交BC的延長線于G,取AB的中點(diǎn)H連接FH.想辦法證明EF=FG,BE⊥BG,四邊形BCFH是菱形即可解決問題.
如圖延長EF交BC的延長線于G,取AB的中點(diǎn)H連接FH.
∵CD=2AD,DF=FC,
∴CF=CB,
∴∠CFB=∠CBF,
∵CD∥AB,
∴∠CFB=∠FBH,
∴∠CBF=∠FBH,
∴∠ABC=2∠ABF.故①正確,
∵DE∥CG,
∴∠D=∠FCG,
∵DF=FC,∠DFE=∠CFG,
∴△DFE≌△FCG(AAS),
∴FE=FG,
∵BE⊥AD,
∴∠AEB=90°,
∵AD∥BC,
∴∠AEB=∠EBG=90°,
∴BF=EF=FG,故②正確,
∵S△DFE=S△CFG,
∴S四邊形DEBC=S△EBG=2S△BEF,故③正確,
∵AH=HB,DF=CF,AB=CD,
∴CF=BH,∵CF∥BH,
∴四邊形BCFH是平行四邊形,
∵CF=BC,
∴四邊形BCFH是菱形,
∴∠BFC=∠BFH,
∵FE=FB,FH∥AD,BE⊥AD,
∴FH⊥BE,
∴∠BFH=∠EFH=∠DEF,
∴∠EFC=3∠DEF,故④正確,
故答案為:①②③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,將△OAB沿對(duì)角線OB所在的直線翻折,點(diǎn)A落在點(diǎn)D處,OD與BC相交于點(diǎn)E,已知OA=8,AB=4
(1)求證:△OBE是等腰三角形;
(2)求E點(diǎn)的坐標(biāo);
(3)坐標(biāo)平面內(nèi)是否存在一點(diǎn)P,使得以B,D,E,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,OE平分∠AOD,OF平分∠BOD.
(1)若∠AOC=70°,求∠DOE和∠EOF的度數(shù);
(2)請(qǐng)寫出圖中∠AOD的補(bǔ)角和∠AOE的余角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上A,B,C三點(diǎn)對(duì)應(yīng)的數(shù)a,b,c滿足(a+40)2+|b+10|=0,B為線段AC的中點(diǎn).
(1)直接寫出A,B,C對(duì)應(yīng)的數(shù)a,b,c的值.
(2)如圖1,點(diǎn)D表示的數(shù)為10,點(diǎn)P,Q分別從A,D同時(shí)出發(fā)勻速相向運(yùn)動(dòng),點(diǎn)P的速度為6個(gè)單位/秒,點(diǎn)Q的速度為1個(gè)單位/秒.當(dāng)點(diǎn)P運(yùn)動(dòng)到C后迅速以原速返回到A又折返向C點(diǎn)運(yùn)動(dòng);點(diǎn)Q運(yùn)動(dòng)至B點(diǎn)后停止運(yùn)動(dòng),同時(shí)P點(diǎn)也停止運(yùn)動(dòng).求在此運(yùn)動(dòng)過程中P,Q兩點(diǎn)相遇點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù).
(3)如圖2,M,N為A,C之間兩點(diǎn)(點(diǎn)M在N左邊,且它們不與A,C重合),E,F分別為AN,CM的中點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠BDC=30°,DC=4,AE⊥BD于E,CF⊥BD于F,且E、F恰好是BD的三等分點(diǎn),AE、CF的延長線分別交DC、AB于N、M點(diǎn),那么四邊形MENF的面積是( )
A.B.C.2D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,AB=AC,D為BC上一點(diǎn),E為AC上一點(diǎn),AD=AE.
(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC= °.
(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD= °,∠CDE= °.
(3)設(shè)∠BAD=α,∠CDE=β猜想α,β之間的關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)AB=4,與y軸交于點(diǎn)C,OC=OA,點(diǎn)D為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM,如圖1,點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQNM的周長最大時(shí),求m的值,并求出此時(shí)的△AEM的面積;
(3)已知H(0,﹣1),點(diǎn)G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個(gè)相鄰的數(shù),這三個(gè)數(shù)的和不可能是( )
A. 27 B. 51 C. 69 D. 72
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在6×6的方格紙中,每個(gè)小方格都是邊長為1的正方形,其中A、B、C為格點(diǎn),作△ABC的外接圓⊙O,則弧AC的長等于( 。
A. π B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com