【題目】如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)經(jīng)過(guò)A(﹣3,0)、B(5,0)、C(0,5)三點(diǎn),O為坐標(biāo)原點(diǎn)
(1)求此拋物線(xiàn)的解析式;
(2)若把拋物線(xiàn)y=ax2+bx+c(a≠0)向下平移 個(gè)單位長(zhǎng)度,再向右平移n(n>0)個(gè)單位長(zhǎng)度得到新拋物線(xiàn),若新拋物線(xiàn)的頂點(diǎn)M在△ABC內(nèi),求n的取值范圍;
(3)設(shè)點(diǎn)P在y軸上,且滿(mǎn)足∠OPA+∠OCA=∠CBA,求CP的長(zhǎng).
【答案】
(1)
解:把A、B、C三點(diǎn)的坐標(biāo)代入函數(shù)解析式可得
,解得 ,
∴拋物線(xiàn)解析式為y=﹣ x2+ x+5
(2)
解:∵y=﹣ x2+ x+5,
∴拋物線(xiàn)頂點(diǎn)坐標(biāo)為(1, ),
∴當(dāng)拋物線(xiàn)y=ax2+bx+c(a≠0)向下平移 個(gè)單位長(zhǎng)度,再向右平移n(n>0)個(gè)單位長(zhǎng)度后,得到的新拋物線(xiàn)的頂點(diǎn)M坐標(biāo)為(1+n,1),
設(shè)直線(xiàn)BC解析式為y=kx+m,把B、C兩點(diǎn)坐標(biāo)代入可得 ,解得 ,
∴直線(xiàn)BC的解析式為y=﹣x+5,
令y=1,代入可得1=﹣x+5,解得x=4,
∵新拋物線(xiàn)的頂點(diǎn)M在△ABC內(nèi),
∴1+n<4,且n>0,解得0<n<3,
即n的取值范圍為0<n<3;
(3)
解:當(dāng)點(diǎn)P在y軸負(fù)半軸上時(shí),如圖1,過(guò)P作PD⊥AC,交AC的延長(zhǎng)線(xiàn)于點(diǎn)D,
由題意可知OB=OC=5,
∴∠CBA=45°,
∴∠PAD=∠OPA+∠OCA=∠CBA=45°,
∴AD=PD,
在Rt△OAC中,OA=3,OC=5,可求得AC= ,
設(shè)PD=AD=m,則CD=AC+AD= +m,
∵∠ACO=∠PCD,∠COA=∠PDC,
∴△COA∽△CDP,
∴ ,即 ,
由 可求得m= ,
∴ ,解得PC=17;
可求得PO=PC﹣OC=17﹣5=12,
如圖2,在y軸正半軸上截取OP′=OP=12,連接AP′,
則∠OP′A=∠OPA,
∴∠OP′A+∠OCA=∠OPA+∠OCA=∠CBA,
∴P′也滿(mǎn)足題目條件,此時(shí)P′C=OP′﹣OC=12﹣5=7,
綜上可知PC的長(zhǎng)為7或17
【解析】(1)根據(jù)A、B、C三點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線(xiàn)的解析式;(2)可先求得拋物線(xiàn)的頂點(diǎn)坐標(biāo),再利用坐標(biāo)平移,可得平移后的坐標(biāo)為(1+n,1),再由B、C兩點(diǎn)的坐標(biāo)可求得直線(xiàn)BC的解析式,可求得y=1時(shí),對(duì)應(yīng)的x的值,從而可求得n的取值范圍;(3)當(dāng)點(diǎn)P在y軸負(fù)半軸上時(shí),過(guò)P作PD⊥AC,交AC的延長(zhǎng)線(xiàn)于點(diǎn)D,根據(jù)條件可知∠PAD=45°,設(shè)PD=DA=m,由△COA∽△CDP,可求出m和PC的長(zhǎng),此時(shí)可求得PO=12,利用等腰三角形的性質(zhì),可知當(dāng)P點(diǎn)在y軸正半軸上時(shí),則有OP=12,從而可求得PC=5.本題主要考查二次函數(shù)的綜合應(yīng)用,涉及到的知識(shí)點(diǎn)有待定系數(shù)法、坐標(biāo)的平移、三角形的外角、等腰三角形的性質(zhì)、相似三角形的判定和性質(zhì)以及分類(lèi)討論等.在(2)中確定出M點(diǎn)向右平移的最大位置是解題的關(guān)鍵,在(3)中利用∠OPA+∠OCA=∠CBA=45°構(gòu)造三角形相似是解題的關(guān)鍵.本題目考查知識(shí)點(diǎn)多,綜合性強(qiáng),特別是第(3)問(wèn)難度很大.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減小;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,AD平分∠CAB交弧BC于點(diǎn)D,連接CD、OD,給出以下四個(gè)結(jié)論:①AC∥OD;②CE=OE;③△ODE∽△ADO;④2CD2=CEAB.其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個(gè)問(wèn)題:如圖1,△ABC中,AB=AC,點(diǎn)D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.
小明經(jīng)探究發(fā)現(xiàn),過(guò)點(diǎn)A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問(wèn)題得到解決.
(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個(gè))
參考小明思考問(wèn)題的方法,解答下列問(wèn)題:
(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點(diǎn),E為DC的中點(diǎn),點(diǎn)F在AC的延長(zhǎng)線(xiàn)上,且∠CDF=∠EAC,若CF=2,求AB的長(zhǎng);
(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點(diǎn)D、E分別在AB、AC邊上,且AD=kDB(其中0<k< ),∠AED=∠BCD,求 的值(用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在大課間活動(dòng)中,體育老師隨機(jī)抽取了七年級(jí)甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測(cè)試,并對(duì)成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖表中的信息完成下列問(wèn)題:
分 組 | 頻數(shù) | 頻率 |
第一組(0≤x<15) | 3 | 0.15 |
第二組(15≤x<30) | 6 | a |
第三組(30≤x<45) | 7 | 0.35 |
第四組(45≤x<60) | b | 0.20 |
(1)頻數(shù)分布表中a= , b= , 并將統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校七年級(jí)共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?
(3)已知第一組中只有一個(gè)甲班學(xué)生,第四組中只有一個(gè)乙班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談心得體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD=BC,AC=BD.
(1)求證:△ADB≌△BCA;
(2)OA與OB相等嗎?若相等,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y= x+ 與兩坐標(biāo)軸分別交于A、B兩點(diǎn).
(1)求∠ABO的度數(shù);
(2)過(guò)A的直線(xiàn)l交x軸半軸于C,AB=AC,求直線(xiàn)l的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D、E分別是△ABC的邊AB、BC上的點(diǎn),且DE∥AC,AE、CD相交于點(diǎn)O,若S△DOE:S△COA=1:25,則S△BDE與S△CDE的比是( )
A.1:3
B.1:4
C.1:5
D.1:25
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某中學(xué)為合理安排體育活動(dòng),在全校喜歡乒乓球、排球、羽毛球、足球、籃球五種球類(lèi)運(yùn)動(dòng)的1000名學(xué)生中,隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,了解學(xué)生最喜歡的一種球類(lèi)運(yùn)動(dòng),每人只能在這五種球類(lèi)運(yùn)動(dòng)中選擇一種.調(diào)查結(jié)果統(tǒng)計(jì)如下:
球類(lèi)名稱(chēng) | 乒乓球 | 排球 | 羽毛球 | 足球 | 籃球 |
人數(shù) | a | 12 | 36 | 18 | b |
解答下列問(wèn)題:
(1)本次調(diào)查中的樣本容量是;
(2)a= , b=;
(3)試估計(jì)上述1000名學(xué)生中最喜歡羽毛球運(yùn)動(dòng)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn),直線(xiàn)l是拋物線(xiàn)的對(duì)稱(chēng)軸.
(1)求拋物線(xiàn)的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線(xiàn)l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫(xiě)出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com