【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過(guò)點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

【答案】
(1)證明:連接OD,

∵OB=OD,

∴∠ABC=∠ODB,

∵AB=AC,

∴∠ABC=∠ACB,

∴∠ODB=∠ACB,

∴OD∥AC,

∵DF是⊙O的切線,

∴DF⊥OD,

∴DF⊥AC


(2)解:連接OE,

∵DF⊥AC,∠CDF=22.5°,

∴∠ABC=∠ACB=67.5°,

∴∠BAC=45°,

∵OA=OE,

∴∠AOE=90°,

∵⊙O的半徑為4,

∴S扇形AOE=4π,SAOE=8 ,

∴S陰影=4π﹣8.


【解析】(1)連接OD,易得∠ABC=∠ODB,由AB=AC,易得∠ABC=∠ACB,等量代換得∠ODB=∠ACB,利用平行線的判定得OD∥AC,由切線的性質(zhì)得DF⊥OD,得出結(jié)論;(2)連接OE,利用(1)的結(jié)論得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用扇形的面積公式和三角形的面積公式得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(8,0),點(diǎn)P(0,m),將線段PA繞著點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°,得到線段PB,連接AB,OB,則BO+BA的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張老師計(jì)劃到超市購(gòu)買甲種文具100個(gè),他到超市后發(fā)現(xiàn)還有乙種文具可供選擇,如果調(diào)整文具的購(gòu)買品種,每減少購(gòu)買1個(gè)甲種文具,需增加購(gòu)買2個(gè)乙種文具.設(shè)購(gòu)買x個(gè)甲種文具時(shí),需購(gòu)買y個(gè)乙種文具.
(1)當(dāng)減少購(gòu)買1個(gè)甲種文具時(shí),x= , y=;
(2)求y與x之間的函數(shù)表達(dá)式.
(3)已知甲種文具每個(gè)5元,乙種文具每個(gè)3元,張老師購(gòu)買這兩種文具共用去540元,甲、乙兩種文具各購(gòu)買了多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=12,過(guò)A,D兩點(diǎn)的⊙O與BC邊相切于點(diǎn)E,則⊙O的半徑為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)(﹣2,3)的直線l經(jīng)過(guò)一、二、三象限,若點(diǎn)(0,a),(﹣1,b),(c,﹣1)都在直線l上,則下列判斷正確的是( )
A.a<b
B.a<3
C.b<3
D.c<﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD和正△AEF都內(nèi)接于⊙O,EF與BC、CD分別相交于點(diǎn)G、H,則 的值是(
A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小慧和小聰沿圖1中的景區(qū)公路游覽.小慧乘坐車速為30km/h的電動(dòng)汽車,早上7:00從賓館出發(fā),游玩后中午12:00回到賓館.小聰騎車從飛瀑出發(fā)前往賓館,速度為20km/h,途中遇見(jiàn)小慧時(shí),小慧恰好游完一景點(diǎn)后乘車前往下一景點(diǎn).上午10:00小聰?shù)竭_(dá)賓館.圖2中的圖象分別表示兩人離賓館的路程s(km)與時(shí)間t(h)的函數(shù)關(guān)系.試結(jié)合圖中信息回答:
(1)小聰上午幾點(diǎn)鐘從飛瀑出發(fā)?
(2)試求線段AB、GH的交點(diǎn)B的坐標(biāo),并說(shuō)明它的實(shí)際意義.
(3)如果小聰?shù)竭_(dá)賓館后,立即以30km/h的速度按原路返回,那么返回途中他幾點(diǎn)鐘遇見(jiàn)小慧?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,⊙O的半徑為r(r>0),若點(diǎn)P′在射線OP上,滿足OP′OP=r2 , 則稱點(diǎn)P′是點(diǎn)P關(guān)于⊙O的“反演點(diǎn)”. 如圖2,⊙O的半徑為4,點(diǎn)B在⊙O上,∠BOA=60°,OA=8,若點(diǎn)A′,B′分別是點(diǎn)A,B關(guān)于⊙O的反演點(diǎn),求A′B′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊△ABC,AB=12,以AB為直徑的半圓與BC邊交于點(diǎn)D,過(guò)點(diǎn)D作DF⊥AC,垂足為F,過(guò)點(diǎn)F作FG⊥AB,垂足為G,連結(jié)GD.
(1)求證:DF是⊙O的切線;
(2)求FG的長(zhǎng);
(3)求tan∠FGD的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案