【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)是點(diǎn)A(3,0),其部分圖象如圖,則下列結(jié)論:
①2a+b=0;
②b2﹣4ac<0;
③一元二次方程ax2+bx+c=0(a≠0)的另一個(gè)解是x=﹣1;
④點(diǎn)(x1,y1),(x2,y2)在拋物線上,若x1<0<x2,則y1<y2.
其中正確的結(jié)論是_____(把所有正確結(jié)論的序號都填在橫線上)
【答案】①③.
【解析】
根據(jù)對稱軸x=1可判定①正確;根據(jù)拋物線與x軸有2個(gè)交點(diǎn)可判定②錯(cuò)誤;根據(jù)二次函數(shù)的對稱性可判定③正確;根據(jù)二次函數(shù)的增減性及x1、x2的位置可判定④錯(cuò)誤.
∵x==1,即b=-2a,∴2a+b=0;①正確;
∵拋物線與x軸有2個(gè)交點(diǎn),∴b2-4ac>0;②錯(cuò)誤;
∵拋物線的對稱軸為直線x=1,點(diǎn)(3,0)關(guān)于直線x=1的對稱點(diǎn)的坐標(biāo)為(-1,0),
∴方程ax2+bx+c=0的兩個(gè)根是x1=-1,x2=3;③正確;
根據(jù)二次函數(shù)的增減性,x1<0<x2,x1、x2可能在對稱軸為直線x=1的兩側(cè),無法判定y1、y2的大小,④錯(cuò)誤.
故答案為:①③.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)-2≤x≤1時(shí),二次函數(shù)y=-(x-m)2+m2+1有最大值4,則實(shí)數(shù)m的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)一次函數(shù)(k,b是常數(shù),且).
(1)若該函數(shù)的圖象過點(diǎn),試判斷點(diǎn)是否也在此函數(shù)的圖象上,并說明理由.
(2)已知點(diǎn)和點(diǎn)都在該一次函數(shù)的圖象上,求k的值.
(3)若,點(diǎn)在該一次函數(shù)圖象上,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y關(guān)于x的二次函數(shù)y=ax2﹣bx+2(a≠0).
(1)當(dāng)a=﹣2,b=﹣4時(shí),求該函數(shù)圖象的對稱軸及頂點(diǎn)坐標(biāo).
(2)在(1)的條件下,Q(m,t)為該函數(shù)圖象上的一點(diǎn),若Q關(guān)于原點(diǎn)的對稱點(diǎn)P也落在該函數(shù)圖象上,求m的值.
(3)當(dāng)該函數(shù)圖象經(jīng)過點(diǎn)(1,0)時(shí),若A(,y1),B(,y2)是該函數(shù)圖象上的兩點(diǎn),試比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市化工材料經(jīng)銷公司購進(jìn)一種化工原料若干千克,價(jià)格為每千克30元.物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克60元,不低于每千克30元.經(jīng)市場調(diào)查發(fā)現(xiàn):日銷售量(千克)是銷售單價(jià)(元)的一次函數(shù),且當(dāng)=40時(shí),=120;=50時(shí),=100.在銷售過程中,每天還要支付其他費(fèi)用500元.
(1)求出與的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(2)求該公司銷售該原料日獲利(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式.
(3)當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知函數(shù)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于y軸對稱.
(1)求直線BC的函數(shù)解析式;
(2)設(shè)點(diǎn)M是x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作y軸的平行線,交直線AB于點(diǎn)P,交直線BC于點(diǎn)Q.
①若△PQB的面積為,求點(diǎn)M的坐標(biāo);
②連接BM,如圖2,若∠BMP=∠BAC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,AD是BC邊上的中線,F是AD邊上的動(dòng)點(diǎn),E是AC邊上一點(diǎn).若AE=2,當(dāng)EF+CF取得最小值時(shí),∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com