【題目】如圖,在平面直角坐標系中,已知點A(0,6),B(b,0),且b<0,C,D分別是OA,AB的中點,AOB的外角∠DBF的平分線BECD的延長線交于點E.

(1)求證:∠DAODOA;

(2)①若b=-8,求CE的長;

②若CE+1,則b=________;

(3)是否存在這樣的b值,使得四邊形OBED為平行四邊形?若存在,請求出此時四邊形OBED對角線的交點坐標;若不存在,請說明理由.

【答案】(1)見解析;(2) ①9;②-2;(3)見解析.

【解析】(1)由CD分別為AO,AB的中點,得到CDOB.又由OBAO,得到CD垂直平分AO,由垂直平分線的性質即可得到結論.

(2)①由三角形中位線定理得到CD的長,由角平分線的定義和平行線的性質得到∠DEB=∠DBE,從而得到EDBD5,即可得到結論.

②由①得:EC=ED+DC=AB+BO,列方程求解即可得到結論.

(3)由四邊形OBED是平行四邊形,得OBED.由EDBDAB,得到AB=-2b,于是有(-b)262=(-2b)2,解方程得到b的值,進而得到AB的長.設平行四邊形OBED的對角線交點為M,作MHOB于點H,則BMBDAB.由ODDBOB,得到∠DBO60°,∠BMH30°,從而可得到BH,MH, OH,即可得到結論.

(1)∵C,D分別為AO,AB的中點,∴CDOB

又∵OBAO,∴CDAC,∴CD垂直平分AO,∴ADOD,∴∠DAO=∠DOA

(2)①∵b=-8,∴OB8,∴CDOB4.易得∠DEB=∠DBE,∴EDBDAB5,∴CECDED459

②由①得:EC=ED+DC=AB+BO,∴,解得:b=-2.故答案為:-2

(3)存在.理由如下:

如圖,∵四邊形OBED是平行四邊形,∴OBED

EDBDAB,∴OBAB

OB=-b,∴AB=-2b,∴(-b)262=(-2b)2,解得:b,∴AB.設平行四邊形OBED的對角線交點為M,作MHOB于點H,則BMBDAB×

ODAD,∴ODDBOB,∴∠DBO60°,∴∠BMH30°,∴BH,MH,∴OH=,∴M).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(題文)如圖,在等腰直角三角形MNC中,CNMN,將MNC繞點C順時針旋轉60°,得到ABC,連接AM,BMBMAC于點O.

(1)NCO的度數(shù)為________;

(2)求證:CAM為等邊三角形;

(3)連接AN,求線段AN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A坐標為(0,3),點B在x軸上
(1)在坐標系中求作一點M,使得點M到點A,點B和原點O這三點的距離相等,在圖中保留作圖痕跡,不寫作法;
(2)若函數(shù)y= 的圖象經(jīng)過點M,且sin∠OAB= ,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣ x+4交x軸于點A,交y軸于點C,拋物線y=ax2 x+c過點A,交y軸于點B(0,﹣2)

(1)求拋物線的解析式;
(2)點M為拋物線在第四象限部分上的一個動點,求四邊形BMAC面積的最大值;
(3)點D為拋物線對稱軸上一點,規(guī)定:d=|AD﹣BD|,探究d是否存在最大值?若存在,請直接寫出d的最大值及此時點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸的負半軸交于點A,B(點A在點B的右邊),與y軸的正半軸交于點C,且OA=OC=1,則下列關系中正確的是(

A.a+b=1
B.b<2a
C.a﹣b=﹣1
D.ac<0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,3秒后,兩點相距15個單位長度.已知點B的速度是點A的速度的4倍(速度單位:單位長度/秒).

1)求出點A、點B運動的速度,并在數(shù)軸上標出A、B兩點從原點出發(fā)運動3秒時的位置;

2)若AB兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,幾秒時,原點恰好處在點A、點B的正中間?

3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點C同時從B點位置出發(fā)向A點運動,當遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過點(0,﹣3),且頂點坐標為(﹣1,﹣4).
(1)求該二次函數(shù)的解析式;
(2)設該二次函數(shù)的圖象與x軸的交點為A、B,與y軸的交點為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上三點A,O,B對應的數(shù)分別為﹣5,0,1,點M為數(shù)軸上任意一點,其對應的數(shù)為x.

請回答問題:

(1)A、B兩點間的距離是_____,若點M到點A、點B的距離相等,那么x的值是_____;

(2)若點A先沿著數(shù)軸向右移動6個單位長度,再向左移動4個單位長度后所對應的數(shù)字是 ____ 

(3)當x為何值時,點M到點A、點B的距離之和是8;

(4)如果點M以每秒3個單位長度的速度從點O向左運動時,點A和點B分別以每秒1個單位長度和每秒4個單位長度的速度也向左運動,且三點同時出發(fā),那么幾秒種后點M運動到點A、點B之間,且點M到點A、點B的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形ABCD的頂點A的坐標為(2,0),點B的坐標為(0,1),點C在第一象限,對角線BD與x軸平行.直線y=x+4與x軸、y軸分別交于點E,F(xiàn).將菱形ABCD沿x軸向左平移k個單位,當點C落在EOF的內(nèi)部時(不包括三角形的邊),k的值可能是( )

A.2 B.3 C.4 D.5

查看答案和解析>>

同步練習冊答案