【題目】有一張直角三角形紙片,記作△ABC,其中∠B=90°.按如圖方式剪去它的一個角(虛線部分),在剩下的四邊形ADEC中,若∠1=165°,則∠2的度數(shù)為°.

【答案】105
【解析】解:∵∠B=90°,
∴∠BDE+∠BED=180°﹣∠B=90°,
又∵∠BDE+∠2=180°,∠BED+∠1=180°,
∴∠1+∠2=360°﹣(∠BDE+∠BED)=270°.
∵∠1=165°,
∴∠2=105°.
所以答案是:105.
【考點精析】掌握三角形的內(nèi)角和外角是解答本題的根本,需要知道三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E、F分別是邊BCCD上的點,且EFBD , AEAF分別交BD與點G和點H , BD=12,EF=8.求:
(1) 的值;
(2)線段GH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,過點B的直線與對角線AC、邊AD分別交于點EF . 過點EEGBC , 交ABG , 則圖中相似三角形有( 。
A.4對
B.5對
C.6對
D.7對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程x2-x-3=0的較小根為x1 , 則下面對x1的估計正確的是( 。
A.-2< x1<-1
B.-3< x1<-2
C.2< x1<3
D.-1< x1<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組管道如圖1所示,其中四邊形ABCD是矩形,O是AC的中點,管道由AB,BC,CD,DA,OA,OB,OC,OD組成,在BC的中點M 處放置了一臺定位儀器.一個機器人在管道內(nèi)勻速行進,對管道進行檢測.設(shè)機器人行進的時間為x,機器人與定位儀器之間的距離為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則機器人的行進路線可能為( )

A.A→O→D
B.B→O→D
C.A→B→O
D.A→D→O

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:
為祝賀北京成功獲得2022年冬奧會主辦權(quán),某工藝品廠準備生產(chǎn)紀念北京申辦冬奧會成功的“紀念章”和“冬奧印”.生產(chǎn)一枚“紀念章”需要用甲種原料4盒,乙種原料3盒;生產(chǎn)一枚“冬奧印”需要用甲種原料5 盒,乙種原料10 盒.該廠購進甲、乙兩種原料分別為20000盒和30000盒,如果將所購進原料正好全部都用完,那么能生產(chǎn)“紀念章”和“冬奧印”各多少枚?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,點A的坐標為(1,0),P是第一象限內(nèi)任意一點,連接PO,PA,若∠POA=m°,∠PAO=n°,則我們把(m°,n°)叫做點P 的“雙角坐標”.例如,點(1,1)的“雙角坐標”為(45°,90°).
(1)點( , )的“雙角坐標”為;
(2)若點P到x軸的距離為 ,則m+n的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式 ≥1,并把它的解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠BAD=α,E為對角線AC上的一點(不與A,C重合),將射線EB繞點E順時針旋轉(zhuǎn)β角之后,所得射線與直線AD交于F點.試探究線段EB與EF的數(shù)量關(guān)系.小宇發(fā)現(xiàn)點E的位置,α和β的大小都不確定,于是他從特殊情況開始進行探究.

(1)如圖1,當α=β=90°時,菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分線的性質(zhì)可知EM=EN,進而可得△EMF≌△ENB,并由全等三角形的性質(zhì)得到EB與EF的數(shù)量關(guān)系為
(2)如圖2,當α=60°,β=120°時,
①依題意補全圖形;
②請幫小宇繼續(xù)探究(1)的結(jié)論是否成立.若成立,請給出證明;若不成立,
請舉出反例說明;
(3)小宇在利用特殊圖形得到了一些結(jié)論之后,在此基礎(chǔ)上對一般的圖形進行了探究,設(shè)∠ABE=γ,若旋轉(zhuǎn)后所得的線段EF與EB的數(shù)量關(guān)系滿足(1)中的結(jié)論,請直接寫出角α,β,γ滿足的關(guān)系:

查看答案和解析>>

同步練習(xí)冊答案