【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=axby=ax2bx的圖象可能是(  )

A. B. C. D.

【答案】C

【解析】A、對(duì)于直線(xiàn)y=ax+b來(lái)說(shuō),由圖象可以判斷,a>0,b>0;而對(duì)于拋物線(xiàn)y=ax2-bx來(lái)說(shuō),對(duì)稱(chēng)軸x=>0,應(yīng)在y軸的右側(cè),故不合題意,圖形錯(cuò)誤;
B、對(duì)于直線(xiàn)y=ax+b來(lái)說(shuō),由圖象可以判斷,a<0,b>0;而對(duì)于拋物線(xiàn)y=ax2-bx來(lái)說(shuō),對(duì)稱(chēng)軸x=<0,應(yīng)在y軸的左側(cè),故不合題意,圖形錯(cuò)誤;
C、對(duì)于直線(xiàn)y=ax+b來(lái)說(shuō),由圖象可以判斷,a>0,b>0;而對(duì)于拋物線(xiàn)y=ax2-bx來(lái)說(shuō),圖象開(kāi)口向上,對(duì)稱(chēng)軸x=>0,應(yīng)在y軸的右側(cè),故符合題意;
D、對(duì)于直線(xiàn)y=ax+b來(lái)說(shuō),由圖象可以判斷,a>0,b>0;而對(duì)于拋物線(xiàn)y=ax2-bx來(lái)說(shuō),圖象開(kāi)口向下,a<0,故不合題意,圖形錯(cuò)誤;
故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商廈進(jìn)貨員預(yù)測(cè)一種應(yīng)季襯衫能暢銷(xiāo)市場(chǎng),就用10000元購(gòu)進(jìn)這種襯衫,面市后果然供不應(yīng)求.于是,商廈又用22000元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)數(shù)量的2倍,但單價(jià)貴了4元,商廈銷(xiāo)售這種襯衫時(shí)每件預(yù)定售價(jià)都是58元.

1)求這種襯衫原進(jìn)價(jià)為每件多少元?

2)經(jīng)過(guò)一段時(shí)間銷(xiāo)售,根據(jù)市場(chǎng)飽和情況,商廈經(jīng)理決定對(duì)剩余的100件襯衫進(jìn)行打折銷(xiāo)售,以提高回款速度,要使這兩批襯衫的總利潤(rùn)不少于8600元,最多可以打幾折?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的弦CD與直徑AB垂直于F,點(diǎn)ECD上,且AE=CE.

(1)求證:CA2=CE CD;

(2)已知CA=5,EC=3,求sinEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AE∥BF,AC平分∠BAE,交BF于點(diǎn)C,BD平分∠ABC,交AE于點(diǎn)D,連接CD.

(1)求證:四邊形ABCD是菱形;

(2)若AB=5,AC=6,求AE,BF之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明購(gòu)買(mǎi)A,B兩種商品,每次購(gòu)買(mǎi)同一種商品的單價(jià)相同,具體信息如下表:

次數(shù)

購(gòu)買(mǎi)數(shù)量(件

購(gòu)買(mǎi)總費(fèi)用(元

A

B

第一次

2

1

55

第二次

1

3

65

根據(jù)以上信息解答下列問(wèn)題:

(1)求A,B兩種商品的單價(jià);

(2)若第三次購(gòu)買(mǎi)這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢(qián)的購(gòu)買(mǎi)方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD,EDC邊上一點(diǎn),DE=1,AE繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90度,得到EF,連接AF,FC,則FC=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1+∠2﹦180°,∠3﹦∠B,則DEBC,下面是王華同學(xué)的推導(dǎo)過(guò)程﹐請(qǐng)你幫他在括號(hào)內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容.

證明:

∵∠1+∠2﹦180(已知),

∠1﹦∠4 _________________,

∴∠2﹢_____﹦180°.

EHAB___________________________________

∴∠B﹦∠EHC________________________________

∵∠3﹦∠B(已知)

∴ ∠3﹦∠EHC____________________

DEBC__________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張長(zhǎng)方形紙片ABCD沿EF折疊后,EDBC交點(diǎn)為G,D、C分別在M、N的位置上,若∠2-1=40°,則∠EFC的度數(shù)為(

A. 115°B. 125°C. 135°D. 145°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一張對(duì)面互相平行的紙條折成如圖所示那樣,EF是折痕,若∠EFB=32°則下列結(jié)論正確的有( )

(1)CEF=32°(2)AEC=116°(3)BGE=64°(4)BFD=116°.

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案