對于實數(shù)x,y,定義一種運算⊕:x⊕y=x-2y,若關(guān)于x的方程x(a⊕x)=2有兩個相等的實數(shù)根,則實數(shù)a=   
【答案】分析:根據(jù)新定義,將x(a⊕x)=2化為一般形式的一元二次方程,再根據(jù)根與系數(shù)的關(guān)系解答即可.
解答:解:根據(jù)新定義,x(a⊕x)=2可化為:
x(a-2x)=2;
即:2x2-ax+2=0,
又∵關(guān)于x的方程x(a⊕x)=2有兩個相等的實數(shù)根,
∴△=0,
即:∴(-a)2-4×2×2=0,
∴a2=16,
∴a=±4.
故答案為:±4.
點評:此題結(jié)合新定義考查了根的判別式,要知道:
(1)△>0?方程有兩個不相等的實數(shù)根;
(2)△=0?方程有兩個相等的實數(shù)根;
(3)△<0?方程沒有實數(shù)根.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

對于實數(shù)u,v,定義一種運算“*”為:u*v=uv+v.若關(guān)于x的方程x*(a*x)=-
14
有兩個不同的實數(shù)根,則滿足條件的實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、對于實數(shù)x,y,定義一種運算⊕:x⊕y=x-2y,若關(guān)于x的方程x(a⊕x)=2有兩個相等的實數(shù)根,則實數(shù)a=
±4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鄂爾多斯)對于實數(shù)a、b,定義運算?如下:a?b=
ab(a>b,a≠0)
a-b(a≤b,a≠0)
,例如,2?4=2-4=
1
16
.計算[2?2]×[(-3)?2]=
1
36
1
36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

給出下列命題:
①對于實數(shù)u,v,定義一種運算“*“為:u*v=uv+v.若關(guān)于x的方程x*(a*x)=-
1
4
沒有實數(shù)根,則滿足條件的實數(shù)a的取值范圍是0<a<1;
②設(shè)直線kx+(k+1)y-1=0(k為正整數(shù))與坐標(biāo)軸所構(gòu)成的直角三角形的面積為Sk,則S1+S2+S3+…+S2008=
1004
2009
;
③函數(shù)y=-
1
x2
+
3
x
的最大值為2;
④甲、乙、丙3位同學(xué)選修課程,從4門課程中,甲選修2門,乙、丙各選修3門,則不同的選修方案共有48種.
其中真命題的個數(shù)有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜賓)對于實數(shù)a、b,定義一種運算“?”為:a?b=a2+ab-2,有下列命題:
①1?3=2;
②方程x?1=0的根為:x1=-2,x2=1;
③不等式組
(-2)?x-4<0
1?x-3<0
的解集為:-1<x<4;
④點(
1
2
5
2
)在函數(shù)y=x?(-1)的圖象上.
其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案