【題目】某商場將進價為 元∕件的玩具以 元∕件的價格出售時,每天可售出 件,經調查當單價每漲 元時,每天少售出 件.若商場想每天獲得 元利潤,則每件玩具應漲多少元?若設每件玩具漲 元,則下列說法錯誤的是( )
A.漲價后每件玩具的售價是 元
B.漲價后每天少售出玩具的數量是 件
C.漲價后每天銷售玩具的數量是 件
D.可列方程為
科目:初中數學 來源: 題型:
【題目】有大小兩種貨車,已知1輛大貨車與3輛小貨車一次可以運貨14噸,2輛大貨車與5輛小貨車一次可以運貨25噸.
(1)1輛大貨車與1輛小貨車一次可以運貨各多少噸?
(2)1輛大貨車一次費用為300元,1輛小貨車一次費用為200元,要求兩種貨車共用10輛,兩次完成80噸的運貨任務,且總費用不超過5400元,有哪幾種用車方案?請指出費用最低的一種方案,并求出相應的費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在我市“精準扶貧”工作中,甲、乙兩個工程隊先后接力為扶貧村莊修建一條210米長的公路,甲隊每天修建15米,乙隊每天修建25米,一共用10天完成.
根據題意,小紅和小芳同學分別列出了下面尚不完整的方程組:
小紅:小芳:
(1)請你分別寫出小紅和小芳所列方程組中未知數x,y表示的意義:
小紅:x表示______,y表示______;
小芳:x表示______,y表示______;
(2)在題中“( 。眱劝研〖t和小芳所列方程組補充完整;
(3)甲工程隊一共修建了______天,乙工程隊一共修建了______米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一件工藝品的進價為100元,標價135元出售,每天可售出100件,根據銷售統(tǒng)計,一件工藝品每降價1元,則每天可多售出4件,要使每天獲得的利潤最大,則每件需降價( )
A.3.6 元
B.5 元
C.10 元
D.12 元
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市銷售某種玩具,進貨價為20元.根據市場調查:在一段時間內,銷售單價是30元時,銷售量是400件,而銷售單價每上漲1元,就會少售出10件玩具,超市要完成不少于300件的銷售任務,又要獲得最大利潤,則銷售單價應定為元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD∥BC,FC⊥CD,∠1=∠2,∠B=60°.
(1)求∠BCF的度數;(2)如果DE是∠ADC的平分線,那么DE與AB平行嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
(1)小亮遇到這樣問題:如圖1,已知AB∥CD,EOF是直線AB、CD間的一條折線.判斷∠O、∠BEO、∠DFO三個角之間的數量關系.小亮通過思考發(fā)現:過點O作OP∥AB,通過構造內錯角,可使問題得到解決.
請回答:∠O、∠BEO、∠DFO三個角之間的數量關系是 .
參考小亮思考問題的方法,解決問題:
(2)如圖2,將△ABC沿BA方向平移到△DEF(B、D、E共線),∠B=50°,AC與DF相交于點G,GP、EP分別平分∠CGF、∠DEF相交于點P,求∠P的度數;
(3)如圖3,直線m∥n,點B、F在直線m上,點E、C在直線n上,連接FE并延長至點A,連接BA、BC和CA,做∠CBF和∠CEF的平分線交于點M,若∠ADC=α,則∠M= (直接用含α的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BE⊥AC與點E,MN⊥AC于點N,∠1=∠2,∠3=∠C,若∠AFE=80°,求∠DAF的度數.請根據解題過程“填空”或“說明理由”.
解:∵BE⊥AC,MN⊥AC
∴BE∥MN
∴∠1= ( )
又∵∠1=∠2
∴∠2= ( )
∴EF∥BC( )
∵∠3=∠C
∴AD∥BC
∴AD∥EF
∴∠DAF+∠AFE=180°( )
∴∠DAF=180°﹣∠AFE=180°﹣80°=100°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,定點、、的坐標分別是(4,0)、(0,4)、(2,0),動點在第一象限,且到原點的距離為4個單位長度.
(1)當點到兩坐標軸的距離相等時,求的面積;
(2)若點是線段(不與點、重合)上的動點,當是等腰直角三角形時,求點到軸的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com