【題目】旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.

已知,△ABC中,ABAC,∠BACα,點(diǎn)D、E在邊BC上,且∠DAEα

1)如圖1,當(dāng)α60°時(shí),將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°到△AFB的位置,連接DF,

求∠DAF的度數(shù);

求證:△ADE≌△ADF;

2)如圖2,當(dāng)α90°時(shí),猜想BD、DECE的數(shù)量關(guān)系,并說明理由;

3)如圖3,當(dāng)α120°,BD4,CE5時(shí),請(qǐng)直接寫出DE的長(zhǎng)為   

【答案】(1)①30°②見解析(2)BD2+CE2DE23

【解析】

1)①利用旋轉(zhuǎn)的性質(zhì)得出∠FAB=CAE,再用角的和即可得出結(jié)論;②利用SAS判斷出△ADE≌△ADF,即可得出結(jié)論;

2)先判斷出BF=CE,∠ABF=ACB,再判斷出∠DBF=90°,即可得出結(jié)論;

3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出結(jié)論.

解:(1)①由旋轉(zhuǎn)得,∠FAB=∠CAE,

∵∠BAD+CAE=∠BAC﹣∠DAE60°30°30°,

∴∠DAF=∠BAD+BAF=∠BAD+CAE30°;

②由旋轉(zhuǎn)知,AFAE,∠BAF=∠CAE,

∴∠BAF+BAD=∠CAE+BAD=∠BAC﹣∠DAE=∠DAE

在△ADE和△ADF中,

∴△ADE≌△ADFSAS);

2BD2+CE2DE2,

理由:如圖2,將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△AFB的位置,連接DF,

BFCE,∠ABF=∠ACB,

由(1)知,△ADE≌△ADF

DEDF,

ABAC,∠BAC90°,

∴∠ABC=∠ACB45°

∴∠DBF=∠ABC+ABF=∠ABC+ACB90°,

根據(jù)勾股定理得,BD2+BF2DF2

即:BD2+CE2DE2;

3)如圖3,將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△AFB的位置,連接DF,

BFCE,∠ABF=∠ACB,

由(1)知,△ADE≌△ADF,

DEDF,BFCE5

ABAC,∠BAC90°,

∴∠ABC=∠ACB30°,

∴∠DBF=∠ABC+ABF=∠ABC+ACB60°

過點(diǎn)FFMBCM,

RtBMF中,∠BFM90°﹣∠DBF30°,

BF5,

,

BD4

DMBDBM,

根據(jù)勾股定理得,

DEDF,

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過,兩點(diǎn),與y軸交于點(diǎn)C,連接AB,AC,BC.

求拋物線的表達(dá)式;

求證:AB平分

拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得是以AB為直角邊的直角三角形,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A地出發(fā),沿同一路線駛向B地.甲車先出發(fā)勻速駛向B地,40min后,乙車出發(fā),勻速行駛一段時(shí)間后,在途中的貨站裝貨耗時(shí)半小時(shí).由于滿載貨物,為了行駛安全,速度減少了50km/h,結(jié)果與甲車同時(shí)到達(dá)B地.甲乙兩車距A地的路程ykm)與乙車行駛時(shí)間xh)之間的函數(shù)圖象如圖所示,則下列說法中正確的有( )

;②甲的速度是60km/h;③乙出發(fā)80min追上甲;④乙剛到達(dá)貨站時(shí),甲距B180km

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在三角形紙片ABC中,已知∠ABC=90,AC=5BC=4,過點(diǎn)A作直線l平行于BC,折疊三角形紙片ABC,使直角頂點(diǎn)B落在直線l上的點(diǎn)P處,折痕為MN,當(dāng)點(diǎn)P在直線l上移動(dòng)時(shí),折痕的端點(diǎn)MN也隨之移動(dòng),若限定端點(diǎn)M、N分別在AB、BC邊上(包括端點(diǎn))移動(dòng),則線段AP長(zhǎng)度的最大值與最小值的差為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在長(zhǎng)方形中,BC=3,動(dòng)點(diǎn)出發(fā),以每秒1個(gè)單位的速度,沿射線方向移動(dòng),作關(guān)于直線的對(duì)稱,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為

1)當(dāng)P點(diǎn)在線段BC上且不與C點(diǎn)重合時(shí),若直線PB’與直線CD相交于點(diǎn)M,且∠PAM=45°,試求:AB的長(zhǎng)

2)若AB=4

①如圖2,當(dāng)點(diǎn)B’落在AC上時(shí),顯然PCB’是直角三角形,求此時(shí)t的值

②是否存在異于圖2的時(shí)刻,使得PCB’是直角三角形?若存在,請(qǐng)直接寫出所有符合題意的t的值?若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=D=90°,在BC、CD上分別找一點(diǎn)M、N,使AMN周長(zhǎng)最小,此時(shí)∠MAN的度數(shù)為_________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,EBC中點(diǎn),AEBC于點(diǎn)E,AFCD于點(diǎn)F,CGAE,CGAF于點(diǎn)H,交AD于點(diǎn)G.

(1)求菱形ABCD的面積;(2)求∠CHA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四塊小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.(1)請(qǐng)用兩種不同的方法求圖②中陰影部分的面積:

方法1 方法2

2)觀察圖②請(qǐng)你寫出下列三個(gè)代數(shù)式:(m+n2,(mn2,mn之間的等量關(guān)系. ;

3)根據(jù)(2)題中的等量關(guān)系,解決:已知:ab=5,ab=6,求:(a+b2的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們有時(shí)會(huì)碰上形如,的式子,其實(shí)我們可以將其進(jìn)一步分母有理化.

形如的式子還可以用以下方法化簡(jiǎn):.*

1)請(qǐng)用不同的方法化簡(jiǎn)(寫出化簡(jiǎn)過程):

i)參照分母有理化的方法得______________________________;

ii)參照(*)式的化簡(jiǎn)方法得______________________________.

2)化簡(jiǎn):.

查看答案和解析>>

同步練習(xí)冊(cè)答案