【題目】△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB交CD于F,CH⊥EF于H,連接DH,求證:
(1)EH=FH;
(2)∠CAB=2∠CDH.
【答案】
(1)證明:∵∠ACB=90°,CD⊥AB于D,
∴∠CAE+∠AEC=∠DAF+∠AFD=90°,
∴∠AFD=∠AEC,
∵∠AFD=∠CFE,
∴∠CFE=∠CEF,
∴CF=CE,
∵CH⊥EF,
∴HE=HF
(2)證明:∵∠ADF=∠CHF=90°,∠AFD=∠CFH,
∴△ADF∽△CFH,
∴ ,
∵∠AFC=∠DFH,
∴△AFC∽△DFH,
∴∠CAF=∠CDH,
∵∠CAD=2∠CAF,
∴∠CAB=2∠CDH.
【解析】(1)根據(jù)余角的性質得到∠AFD=∠AEC,證得∠CFE=∠CEF,得到CF=CE,根據(jù)等腰三角形的性質即可得到結論.(2)由于∠ADF=∠CHF=90°,∠AFD=∠CFH,得到△ADF∽△CFH,根據(jù)相似三角形的性質得到 ,由于∠AFC=∠DFH,得到△AFC∽△DFH,根據(jù)相似三角形的性質得到∠CAF=∠CDH,等量代換即可得到結論.
【考點精析】解答此題的關鍵在于理解相似三角形的判定與性質的相關知識,掌握相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),( ,y2)是拋物線上兩點,則y1<y2 , 其中說法正確的是( )
A.①②
B.②③
C.①②④
D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張老師駕車從家出發(fā)到植物園賞花,勻速行駛一段時間后,途中遇到堵車原地等待一會兒,然后加速行駛,到達植物園,參觀結束后,張老師駕車一路勻速返回,其中x表示汽車從家出發(fā)后所用時間,y表示車離家的距離,下面能反映y與x的函數(shù)關系式的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張老師駕車從家出發(fā)到植物園賞花,勻速行駛一段時間后,途中遇到堵車原地等待一會兒,然后加速行駛,到達植物園,參觀結束后,張老師駕車一路勻速返回,其中x表示汽車從家出發(fā)后所用時間,y表示車離家的距離,下面能反映y與x的函數(shù)關系式的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的兩條角平分線BD、CE交于O,且∠A=60°,則下列結論中不正確的是( )
A.∠BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AE⊥FE,垂足為E,且E是DC的中點.
(1)如圖①,如果FC⊥DC,AD⊥DC,垂足分別為C,D,且AD=DC,判斷AE是∠FAD的角平分線嗎?(不必說明理由)
(2)如圖②,如果(1)中的條件“AD=DC”去掉,其余條件不變,(1)中的結論仍成立嗎?請說明理由;
(3)如圖③,如果(1)中的條件改為“AD∥FC”,(1)中的結論仍成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調查發(fā)現(xiàn),若每箱以50元的價格出售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數(shù)關系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數(shù)關系式.
(3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com