【題目】如圖1,拋物線C1:y=ax2+bx+1的頂點(diǎn)坐標(biāo)為D(1,0)且經(jīng)過點(diǎn)(0,1),將拋物線C1向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線C2,直線y=x+c,經(jīng)過點(diǎn)D交y軸于點(diǎn)A,交拋物線C2于點(diǎn)B,拋物線C2的頂點(diǎn)為P.
(1)求拋物線C1的解析式;
(2)如圖2,連結(jié)AP,過點(diǎn)B作BC⊥AP交AP的延長線于C,設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連結(jié)BQ并延長交AC于點(diǎn)F,
①當(dāng)點(diǎn)Q運(yùn)動(dòng)到什么位置時(shí),S△PBD×S△BCF=8?
②連接PQ并延長交BC于點(diǎn)E,試證明:FC(AC+EC)為定值.
【答案】(1)y=x2﹣2x+1;(2)點(diǎn)Q運(yùn)動(dòng)到x軸時(shí),S△PBD×S△BCF=8;②證明見解析.
【解析】
(1)已知頂點(diǎn)D的坐標(biāo),設(shè)拋物線的頂點(diǎn)式為:y=a(x-1)2,將點(diǎn)(0,1)代入即可;
(2)根據(jù)平移規(guī)律求出平移后拋物線的頂點(diǎn)坐標(biāo),即P(2,-1),根據(jù)頂點(diǎn)式,得平移后拋物線解析式y=(x-2)2-1,由解析式,得A(0,-1),B(4,3),可求△DBP的面積;
(3)由QM∥CE,得△PQM∽△PEC,利用相似比求EC,由QN∥FC,得△BQN∽△BFC,利用相似比求FC,已知AC=4,再計(jì)算FC(AC+EC)為定值.
(1)把頂點(diǎn)坐標(biāo)為D(1,0)和點(diǎn)(0,1)坐標(biāo)代入y=ax2+bx+1,
解得:拋物線的方程為:y=x2﹣2x+1;
(2)拋物線C1向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物拋物線C1向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線C2,
則拋物線C2的方程為:y=(x﹣2)2﹣1=x2﹣4x+3,
此時(shí)頂點(diǎn)P坐標(biāo)為(2,﹣1),A(0,﹣1)、B(4,3),
①則:S△PBD=3,S△BCF=,
設(shè)點(diǎn)Q(m,m2﹣4m+3),把Q、B點(diǎn)坐標(biāo)代入一次函數(shù)表達(dá)式,
解得:BQ所在的直線方程為:y=mx+(3﹣4m),
則:F(,﹣1),S△BCF=FC(yB﹣yC)==,
則m=3,點(diǎn)Q坐標(biāo)為:(3,0),即:點(diǎn)Q運(yùn)動(dòng)到x軸時(shí),S△PBD×S△BCF=8;
②如下圖所示,過Q點(diǎn)分別作AC、BC的垂線QM、QN,
設(shè):Q(t,t2﹣4t+3),則QM=CN=(t﹣2)2,MC=QN=4﹣t,
∵QM∥CE,∴=,則:=,解得:EC=2t﹣4,
∵QN∥FC,,則:FC=,而AC=4,
∴FC(AC+EC)=(4+2t﹣4)=8,為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富學(xué)生的文體生活,育紅學(xué)校準(zhǔn)備成立“聲樂、演講、舞蹈、足球、籃球”五個(gè)社團(tuán),要求每個(gè)學(xué)生都參加一個(gè)社團(tuán)且每人只能參加一個(gè)社團(tuán).為了了解即將參加每個(gè)社團(tuán)的大致人數(shù),學(xué)校對(duì)部分學(xué)生進(jìn)行了抽樣調(diào)查在整理調(diào)查數(shù)據(jù)的過程中,繪制出如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)被抽查的學(xué)生一共有多少人?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)若全校有學(xué)生1500人,請(qǐng)你估計(jì)全校有意參加“聲樂”社團(tuán)的學(xué)生人數(shù).
(4)從被抽查的學(xué)生中隨意選出1人,該學(xué)生恰好選擇參加“演講”社團(tuán)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D,E兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是ts.過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請(qǐng)說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實(shí)驗(yàn),他們共拋了60次,出現(xiàn)向上點(diǎn)數(shù)的次數(shù)如表:
向上點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計(jì)算出現(xiàn)向上點(diǎn)數(shù)為6的頻率.
(2)丙說:“如果拋600次,那么出現(xiàn)向上點(diǎn)數(shù)為6的次數(shù)一定是100次.”請(qǐng)判斷丙的說法是否正確并說明理由.
(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點(diǎn)數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,OB=OC=3.
(1)求該拋物線的函數(shù)解析式.
(2)如圖1,連接BC,點(diǎn)D是直線BC上方拋物線上的點(diǎn),連接OD,CD.OD交BC于點(diǎn)F,當(dāng)S△COF:S△CDF=3:2時(shí),求點(diǎn)D的坐標(biāo).
(3)如圖2,點(diǎn)E的坐標(biāo)為(0,),點(diǎn)P是拋物線上的點(diǎn),連接EB,PB,PE形成的△PBE中,是否存在點(diǎn)P,使∠PBE或∠PEB等于2∠OBE?若存在,請(qǐng)直接寫出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)的坐標(biāo)是,點(diǎn)的坐標(biāo)是,
(1)圖中點(diǎn)的坐標(biāo)是________.
(2)點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)是______,并作出四邊形.
(3)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線L:y=x2+bx﹣2與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸相交于點(diǎn)C.且點(diǎn)A的坐標(biāo)是(﹣1,0).
(1)求該拋物線的函數(shù)表達(dá)式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,并求出△ABC的面積;
(3)將拋物線向左或向右平移,得到拋物線L′,L′與x軸相交于A'、B′兩點(diǎn)(點(diǎn)A′在點(diǎn)B′的左側(cè)),并與y軸相交于點(diǎn)C′,要使△A'B′C′和△ABC的面積相等,求所有滿足條件的拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2 m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9 m,高度為2.43 m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18 m.
(1)當(dāng)h=2.6時(shí),求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時(shí),球能否越過球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com