【題目】已知:如圖,在Rt△ACB中,∠C=90°,BC=3cm,AC=3cm,點(diǎn)P由B點(diǎn)出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為2cm/s;點(diǎn)Q由A點(diǎn)出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為cm/s;若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<3),解答下列問(wèn)題:
(1)如圖①,連接PC,當(dāng)t為何值時(shí)△APC∽△ACB,并說(shuō)明理由;
(2)如圖②,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)時(shí),是否存在某一時(shí)刻t,使得點(diǎn)P在線段QC的垂直平分線上,請(qǐng)說(shuō)明理由;
(3)如圖③,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)時(shí),線段BC上是否存在一點(diǎn)G,使得四邊形PQGB為菱形?若存在,試求出BG長(zhǎng);若不存在請(qǐng)說(shuō)明理由.
【答案】(1)t=,理由見解析;(2)存在,t=1,理由見解析;(3)不存在,理由見解析.
【解析】
(1)結(jié)合直角三角形性質(zhì),由△APC∽△ACB,得;(2)過(guò)點(diǎn)P作PM⊥AC,根據(jù)線段垂直平分線性質(zhì),求QM,AM的表達(dá)式,證△APM∽△ABC,得 ,;(3)假設(shè)線段BC上是存在一點(diǎn)G,使得四邊形PQGB為平行四邊形,則PQ∥BG,PQ=BG,由△APQ∽△ABC,得,得BP=2t=3,故PQ≠BP.
(1)在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,
∴AB=6,
由運(yùn)動(dòng)知,BP=2t,AQ= ,
∴AP=6﹣2t,
∵△APC∽△ACB,
∴t= ;
(2)存在,
理由:如圖②,由運(yùn)動(dòng)知,BP=2t,AQ=,
∴AP=6﹣2t,CQ= ,
∵點(diǎn)P是CQ的垂直平分線上,
過(guò)點(diǎn)P作PM⊥AC,
∴QM=CM=
∴AM=AQ+QM= =(3+t)
∵∠ACB=90°,∴PM∥BC,
∴△APM∽△ABC
∴
∴解得t=1;
(3)不存在
理由:由運(yùn)動(dòng)知,BP=2t,,
∴AP=6﹣2t,
假設(shè)線段BC上是存在一點(diǎn)G,使得四邊形PQGB為平行四邊形,
∴PQ∥BG,PQ=BG,
∴△APQ∽△ABC,,
∴,
∴BP=2t=3,
∴PQ≠BP,
∴平行四邊形PQGB不可能是菱形.即:線段BC上不存在一點(diǎn)G,使得四邊形PQGB為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線和直線l:y=kx+b,點(diǎn)A(-3,-3),B(1,-1)均在直線l上.
(1)若拋物線C與直線l有交點(diǎn),求a的取值范圍;
(2)當(dāng)a=-1,二次函數(shù)的自變量x滿足m≤x≤m+2時(shí),函數(shù)y的最大值為-4,求m的值;
(3)若拋物線C與線段AB有兩個(gè)不同的交點(diǎn),請(qǐng)直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鎮(zhèn)政府想了解對(duì)王家村進(jìn)行“精準(zhǔn)扶貧”一年來(lái)村民的經(jīng)濟(jì)情況,統(tǒng)計(jì)員小李用簡(jiǎn)單隨機(jī)抽樣的方法,在全村戶家庭中隨機(jī)抽取戶,調(diào)查過(guò)去一年的收入(單位:萬(wàn)元),從而去估計(jì)全村家庭年收入情況.
已知調(diào)查得到的數(shù)據(jù)如下:
為了便于計(jì)算,小李在原數(shù)據(jù)的每個(gè)數(shù)上都減去,得到下面第二組數(shù):
請(qǐng)你用小李得到的第二組數(shù)計(jì)算這戶家庭的平均年收入,并估計(jì)全村年收入及全村家庭年收人超過(guò)萬(wàn)元的百分比;已知某家庭過(guò)去一年的收人是萬(wàn)元,請(qǐng)你用調(diào)查得到的數(shù)據(jù)的中位數(shù)推測(cè)該家庭的收入情況在全村處于什么水平?
已知小李算得第二組數(shù)的方差是,小王依據(jù)第二組數(shù)的方差得出原數(shù)據(jù)的方差為,你認(rèn)為小王的結(jié)果正確嗎?如果不正確,直接寫出你認(rèn)為正確的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC上有一點(diǎn)E,且CE=4AE,點(diǎn)F在DC的延長(zhǎng)線上,連接EF,過(guò)點(diǎn)E作EG⊥EF,交CB的延長(zhǎng)線于點(diǎn)G,連接GF并延長(zhǎng),交AC的延長(zhǎng)線于點(diǎn)P,若AB=5,CF=2,則線段EP的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時(shí),它是菱形;B. 當(dāng)∠ABC=90°時(shí),它是矩形;
C. 當(dāng)AC=BD時(shí),它是正方形;D. 當(dāng)AC⊥BD時(shí),它是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,Rt△ABC兩直角邊的邊長(zhǎng)為AC=3,BC=4.
(1)如圖2,⊙O與Rt△ABC的邊AB相切于點(diǎn)X,與邊BC相切于點(diǎn)Y.請(qǐng)你在圖2中作出并標(biāo)明⊙O的圓心(用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)P是這個(gè)Rt△ABC上和其內(nèi)部的動(dòng)點(diǎn),以P為圓心的⊙P與Rt△ABC的兩條邊相切.設(shè)⊙P的面積為S,你認(rèn)為能否確定S的最大值?若能,請(qǐng)你求出S的最大值;若不能,請(qǐng)你說(shuō)明不能確定S的最大值的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教材呈現(xiàn):如圖是華師版九年級(jí)上冊(cè)數(shù)學(xué)教材第78頁(yè)的部分內(nèi)容.
例2 如圖,在中,分別是邊的中點(diǎn),相交于點(diǎn),求證:,
證明:連結(jié).
請(qǐng)根據(jù)教材提示,結(jié)合圖①,寫出完整的證明過(guò)程.
結(jié)論應(yīng)用:在中,對(duì)角線交于點(diǎn),為邊的中點(diǎn),、交于點(diǎn).
(1)如圖②,若為正方形,且,則的長(zhǎng)為 .
(2)如圖③,連結(jié)交于點(diǎn),若四邊形的面積為,則的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)的圖象交于C、D兩點(diǎn).已知點(diǎn)C的坐標(biāo)是(6,-1),D(n,3).
(1)求m的值和點(diǎn)D的坐標(biāo).
(2)求的值.
(3)根據(jù)圖象直接寫出:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象過(guò)點(diǎn),點(diǎn)(與0不重合)是圖象上的一點(diǎn),直線過(guò)點(diǎn)且平行于軸.于點(diǎn),點(diǎn).
(1)求二次函數(shù)的解析式;
(2)求證:點(diǎn)在線段的中垂線上;
(3)設(shè)直線交二次函數(shù)的圖象于另一點(diǎn),于點(diǎn),線段的中垂線交于點(diǎn),求的值;
(4)試判斷點(diǎn)與以線段為直徑的圓的位置關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com