【題目】兩個少年在綠茵場上游戲.小紅從點出發(fā)沿線段運動到點,小蘭從點出發(fā),以相同的速度沿逆時針運動一周回到點,兩人的運動路線如圖1所示,其中.兩人同時開始運動,直到都停止運動時游戲結(jié)束,其間他們與點的距離與時間(單位:秒)的對應(yīng)關(guān)系如圖2所示.則下列說法正確的是( )
A.小紅的運動路程比小蘭的長
B.兩人分別在1.09秒和7.49秒的時刻相遇
C.當(dāng)小紅運動到點的時候,小蘭已經(jīng)經(jīng)過了點
D.在4.84秒時,兩人的距離正好等于的半徑
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC邊在直線a上,將△ABC繞點A順時針旋轉(zhuǎn)到位置①可得到點P1,此時AP1=;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時AP2=1+;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時AP3=2+;….按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點P2020為止,則AP2020=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點A表示小明家,點B表示學(xué)校.小明媽媽騎車帶著小明去學(xué)校,到達(dá)C處時發(fā)現(xiàn)數(shù)學(xué)書沒帶,于是媽媽立即騎車原路回家拿書后再追趕小明,同時小明步行去學(xué)校,到達(dá)學(xué)校后等待媽媽.假設(shè)拿書時間忽略不計,小明和媽媽在整個運動過程中分別保持勻速.媽媽從C處出發(fā)x分鐘時離C處的距離為y1米,小明離C處的距離為y2米,如圖②,折線O-D-E-F表示y1與x的函數(shù)圖像;折線O-G-F表示y2與x的函數(shù)圖像.
(1)小明的速度為_________m/min,圖②中a的值為__________.
(2)設(shè)媽媽從C處出發(fā)x分鐘時媽媽與小明之間的距離為y米.
①寫出小明媽媽在騎車由C處返回到A處的過程中,y與x的函數(shù)表達(dá)式及x的取值范圍;
②在圖③中畫出整個過程中y與x的函數(shù)圖像.(要求標(biāo)出關(guān)鍵點的坐標(biāo))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,連接AC,BC,OE⊥AC于點E,ED∥AB交BC于點F,且∠BCD=∠A
(1)求證:CD是⊙O的切線;
(2)求證:;
(3)若,BC=6,求CD的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)進(jìn)行基于學(xué)生核心素養(yǎng)課程體系的開發(fā),學(xué)校計劃開設(shè):藝術(shù)、武術(shù)、書法、科技共四門選修課,并開展了以“你最想?yún)⒓拥倪x修課是哪門?(必選且只選一門選修課)”為主題的調(diào)查活動,在全校范圍內(nèi)隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖的信息回答下列問題:
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)分別求出參加調(diào)查的學(xué)生中選擇武術(shù)和書法選修課的人數(shù),并補全條形統(tǒng)計圖;
(3)若該中學(xué)共有 1600 名學(xué)生,請你估計該中學(xué)選擇科技選修課的學(xué)生大約有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,過AB的中點E作EC⊥OA于C,過點B作⊙O的切線BD交CE的延長線于點D.
(1)求證:DB=DE;
(2)連接AD,若AB=24,DB=10,求四邊形OADB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:Rt△ABC,∠C=90°.
(1)點E在BC邊上,且△ACE的周長為AC+BC,以線段AE上一點O為圓心的⊙O恰與AB、BC邊都相切.請用無刻度的直尺和圓規(guī)確定點E、O的位置;
(2)若BC=8,AC=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過點,直線與軸交于點.
(1)求的值及點的坐標(biāo);
(2)直線與函數(shù)的圖象交于點,記圖象在點,之間的部分與線段,,圍成的區(qū)域(不含邊界)為.
①當(dāng)時,直接寫出區(qū)域內(nèi)的整點個數(shù);
②若區(qū)域內(nèi)恰有2個整點,結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D為邊BC的中點,點E在△ABC內(nèi),AE平分∠BAC,CE⊥AE點F在AB上,且BF=DE
(1)求證:四邊形BDEF是平行四邊形
(2)線段AB,BF,AC之間具有怎樣的數(shù)量關(guān)系?證明你所得到的結(jié)論
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com