【題目】A,B兩地相距60km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā),圖中l(wèi)1 , l2表示兩人離A地的距離s(km)與時(shí)間t(h)的關(guān)系,請(qǐng)結(jié)合圖象解答下列問題:
(1)表示乙離A地的距離與時(shí)間關(guān)系的圖象是(填l1或l2); 甲的速度是km/h,乙的速度是km/h;
(2)甲出發(fā)多少小時(shí)兩人恰好相距5km?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+2x+3與x軸交于點(diǎn)A,B(A在B的左側(cè)),與y軸交于點(diǎn)C.
(1)求直線BC的解析式;
(2)拋物線的對(duì)稱軸上存在點(diǎn)P,使∠APB=∠ABC,利用圖1求點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q在y軸右側(cè)的拋物線上,利用圖2比較∠OCQ與∠OCA的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在求同一坐標(biāo)軸上兩點(diǎn)間的距離時(shí)發(fā)現(xiàn),對(duì)于平面直角坐標(biāo)系內(nèi)任意兩點(diǎn)P1(x1 , y1),P2(x2 , y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:P1P2= 他還利用圖2證明了線段P1P2的中點(diǎn)P(x,y)P的坐標(biāo)公式:x= ,y= .
(1)請(qǐng)你幫小明寫出中點(diǎn)坐標(biāo)公式的證明過程;
(2)①已知點(diǎn)M(2,﹣1),N(﹣3,5),則線段MN長度為;
②直接寫出以點(diǎn)A(2,2),B(﹣2,0),C(3,﹣1),D為頂點(diǎn)的平行四邊形頂點(diǎn)D的坐標(biāo):;
(3)如圖3,點(diǎn)P(2,n)在函數(shù)y= x(x≥0)的圖象OL與x軸正半軸夾角的平分線上,請(qǐng)?jiān)贠L、x軸上分別找出點(diǎn)E、F,使△PEF的周長最小,簡要敘述作圖方法,并求出周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017威海)央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣,某校為滿足學(xué)生的閱讀需求,欲購進(jìn)一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)圖2中“小說類”所在扇形的圓心角為度;
(4)若該校共有學(xué)生2500人,估計(jì)該校喜歡“社科類”書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD分別與⊙O相切于B,D兩點(diǎn),且AB⊥CD,垂足為P,連接BD,若BD=4,則陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是( )
A.①②③④
B.②③
C.①②④
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣ x+ 分別與x軸、y軸交于B、C兩點(diǎn),點(diǎn)A在x軸上,∠ACB=90°,拋物線y=ax2+bx+ 經(jīng)過A,B兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求拋物線的解析式;
(3)點(diǎn)M是直線BC上方拋物線上的一點(diǎn),過點(diǎn)M作MH⊥BC于點(diǎn)H,作MD∥y軸交BC于點(diǎn)D,求△DMH周長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國魏晉時(shí)期的數(shù)學(xué)家劉徽創(chuàng)立了“割圓術(shù)”,認(rèn)為圓內(nèi)接正多邊形邊數(shù)無限增加時(shí),周長就越接近圓周長,由此求得了圓周率π的近似值,設(shè)半徑為r的圓內(nèi)接正n邊形的周長為L,圓的直徑為d,如圖所示,當(dāng)n=6時(shí),π≈ = =3,那么當(dāng)n=12時(shí),π≈ = . (結(jié)果精確到0.01,參考數(shù)據(jù):sin15°=cos75°≈0.259)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在以O(shè)為圓心的兩個(gè)同心圓中,小圓的半徑為1,AB與小圓相切于點(diǎn)A,與大圓相交于點(diǎn)B,大圓的弦BC⊥AB于點(diǎn)B,過點(diǎn)C作大圓的切線CD交AB的延長線于點(diǎn)D,連接OC交小圓于點(diǎn)E,連接BE、BO.
(1)求證:△AOB∽△BDC;
(2)設(shè)大圓的半徑為x,CD的長為y: ①求y與x之間的函數(shù)關(guān)系式;
②當(dāng)BE與小圓相切時(shí),求x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com