【題目】已知菱形,是動(dòng)點(diǎn),邊長為4, ,則下列結(jié)論正確的有幾個(gè)(

; 為等邊三角形

,則

A.1B.2C.3D.4

【答案】D

【解析】

①易證ABC為等邊三角形,得AC=BC,∠CAF=B,結(jié)合已知條件BE=AF可證BEC≌△AFC;②得FC=EC,∠FCA=ECB,得∠FCE=ACB,進(jìn)而可得結(jié)論;③證明∠AGE=BFC則可得結(jié)論;④分別證明AEG∽△FCGFCG∽△ACF即可得出結(jié)論.

在四邊形是菱形中,

,

∴△ABC為等邊三角形,

,故①正確;

,

∴∠FCE=ACB=60°,

為等邊三角形,故②正確;

∵∠AGE+GAE+AEG=180°,∠BEC+CEF+AEG=180°,

又∵∠CEF=CAB=60°,

∴∠BEC=AGE

由①得,∠AFC=BEC

∴∠AGE=AFC,故③正確;

∴∠AEG=FCG

∴△AEG∽△FCG,

∵∠AGE=FGC,∠AEG=FCG

∴∠CFG=GAE=FAC

ACF∽△FCG,

AF=1,

BE=1

AE=3,

,故④正確.

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=x+3的圖象與x軸交于點(diǎn)A,二次函數(shù)y=x2+mx+n的圖象經(jīng)過點(diǎn)A.

(1)當(dāng)m=4時(shí),求n的值;

(2)設(shè)m=﹣2,當(dāng)﹣3≤x≤0時(shí),求二次函數(shù)y=x2+mx+n的最小值;

(3)當(dāng)﹣3≤x≤0時(shí),若二次函數(shù)﹣3≤x≤0時(shí)的最小值為﹣4,求m、n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠B90°,AB12米,BC24米,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊ABB2/秒的速度運(yùn)動(dòng)(不與點(diǎn)B重合),動(dòng)點(diǎn)Q從點(diǎn)B開始沿BCC4/秒的速度運(yùn)動(dòng)(不與點(diǎn)C重合).如果P、Q分別從AB同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為x秒,四邊形APQC的面積為y平方米.

1)求yx之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍;

2)求當(dāng)x為多少時(shí),y有最小值,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)商店銷售一種紀(jì)念品,每件的進(jìn)貨價(jià)為40元.經(jīng)市場(chǎng)調(diào)研,當(dāng)該紀(jì)念品每件的銷售價(jià)為50元時(shí),每天可銷售200件;當(dāng)每件的銷售價(jià)每增加1元,每天的銷售數(shù)量將減少10件.

1)當(dāng)銷售該紀(jì)念品每天能獲得利潤2160元時(shí),每件的銷售價(jià)應(yīng)為多少?

2)當(dāng)每件的銷售價(jià)為多少時(shí),銷售該紀(jì)念品每天獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了掌握我市中考模擬數(shù)學(xué)考試卷的命題質(zhì)量與難度系數(shù),調(diào)研老師在我市某地選取一個(gè)水平相當(dāng)?shù)某跞昙?jí)進(jìn)行調(diào)研,將隨機(jī)抽取的部分學(xué)生成績(得分為整數(shù),滿分為150分)分為5組(從左到右的順序).統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖.觀察圖形的信息,回答下列問題:

1)本次調(diào)查共隨機(jī)抽取了該年級(jí)___________名學(xué)生,考試成績120分以上(含120分)學(xué)生有_________名;

2)規(guī)定:成績位于前5%的可獲得小禮品一份,在被調(diào)查的學(xué)生中,某位學(xué)生成績?yōu)?/span>134分,試判斷他是否能獲獎(jiǎng),說明理由;

3)如果第一組中只有一名是女生,第五組中只有一名是男生,針對(duì)考試成績情況,命題教師決定從第一組、第五組分別隨機(jī)選出一名同學(xué)談?wù)勛鲱}的感想…,請(qǐng)你用列表或畫樹狀圖的方法求出所選兩名學(xué)生剛好是一名女生和一名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4,BC=6點(diǎn)D在底邊BC上,且∠DAC=ACD,將△ACD沿著AD所在直線翻折,使得點(diǎn)C落到點(diǎn)E處,聯(lián)結(jié)BE,那么BE的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ACBD交于點(diǎn)E,點(diǎn)EBD的中點(diǎn),延長CD到點(diǎn)F,使DFCD,連接AF,

1)求證:AECE

2)求證:四邊形ABDF是平行四邊形;

3)若AB2,AF4,∠F30°,則四邊形ABCF的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,點(diǎn)C在第四象限,點(diǎn)Bx軸的正半軸上.∠OAB90°OAABOB,OC的長分別是二元一次方程組的解(OBOC).

1)求點(diǎn)A和點(diǎn)B的坐標(biāo);

2)點(diǎn)P是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)OB重合),過點(diǎn)P的直線ly軸平行,直線l交邊OA或邊AB于點(diǎn)Q,交邊OC或邊BC于點(diǎn)R.設(shè)點(diǎn)P的橫坐標(biāo)為t,線段QR的長度為m.已知t4時(shí),直線l恰好過點(diǎn)C

①當(dāng)0t3時(shí),求m關(guān)于t的函數(shù)關(guān)系式;

②當(dāng)m時(shí),求點(diǎn)P的橫坐標(biāo)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過兩點(diǎn),若關(guān)于的一元二次方程的一個(gè)解為,則__________

查看答案和解析>>

同步練習(xí)冊(cè)答案