【題目】9分)如圖,在平面直角坐標(biāo)系中,點A1)、B20)、O0,0),反比例函數(shù)y=圖象經(jīng)過點A

1)求k的值;

2)將△AOB繞點O逆時針旋轉(zhuǎn)60°,得到△COD,其中點A與點C對應(yīng),試判斷點D是否在該反比例函數(shù)的圖象上?

【答案】1;(2D1)在反比例函數(shù)y=的圖象上

【解析】試題(1)根據(jù)待定系數(shù)法,直接代入點的坐標(biāo)即可求得k;

2)根據(jù)旋轉(zhuǎn)的性質(zhì)可求出D點的坐標(biāo),再代入解析式可確定.

試題解析:解:(1函數(shù)y=的圖象過點A,1),

k=xy=×1=

2∵B2,0),

∴OB=2,

∵△AOB繞點O逆時針旋轉(zhuǎn)60°得到△COD,

∴OD=OB=2∠BOD=60°,

如圖,過點DDE⊥x軸于點E,

DE=OEsin60°=2×=,

OE=ODcos60°=2×=1,

D1, ),

由(1)可知y=,

當(dāng)x=1時,y==

D1, )在反比例函數(shù)y=的圖象上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCDAB=2AD,A0,1),C、D在反比例函數(shù)k0)的圖象上,ABx軸的正半軸相交于點E,EAB的中點k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的方程有兩個不相等的實數(shù)根.

求實數(shù)的取值范圍;

是否存在實數(shù),使方程的兩個實數(shù)根之和等于兩實數(shù)根之積的算術(shù)平方根?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A(2,0),B(0,﹣6)兩點

(1)求這個二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連接BA,BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:()如果我們能找到兩個實數(shù)xy使,這樣,那么我們就稱和諧二次根式,則上述過程就稱之為化簡和諧二次根式”.

例如:.

()在進(jìn)行二次根式的化簡與運(yùn)算時,我們有時還會碰上如一樣的式子,其實我們還可以將其進(jìn)一步化簡:,那么我們稱這個過程為分式的分母有理化.

根據(jù)閱讀材料解決下列問題:

(1)化簡和諧二次根式:①___________,②___________;

(2)已知,求的值;

(3)設(shè)的小數(shù)部分為,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將平行四邊形ABCD繞點A逆時針旋轉(zhuǎn)40°,得到平行四邊形AB′C′D′,若點B′恰好落在BC邊上,則∠DC′B′的度數(shù)為(

A. 60° B. 65° C. 70° D. 75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標(biāo);

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運(yùn)動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運(yùn)動,當(dāng)點M 達(dá)點B時,點MN同時停止運(yùn)動,問點MN運(yùn)動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BE=CF,AB∥DE,添加下列哪個條件不能證明△ABC≌△DEF的是( )

A. AB=DE B. ∠A=D C. AC=DF D. AC∥DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過A﹣1,0),B5,0),C0,)三點.

1)求拋物線的解析式;

2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標(biāo);

3)點Mx軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案