【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
【答案】(1)見解析;(2)45°;(3)見解析.
【解析】
(1)根據(jù)AF平分∠BAD,可得∠BAF=∠DAF,利用四邊形ABCD是平行四邊形,求證∠CEF=∠F即可;(2)根據(jù)∠ABC=90°,G是EF的中點可直接求得;(3)分別連接GB、GC,求證四邊形CEGF是平行四邊形,再求證△ECG是等邊三角形,由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,求證△BEG≌△DCG,然后即可求得答案.
(1)證明:如圖1,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)解:連接GC、BG,
∵四邊形ABCD為平行四邊形,∠ABC=90°,
∴四邊形ABCD為矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF為等腰直角三角形,
∵G為EF中點,
∴EG=CG=FG,CG⊥EF,
∵△ABE為等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG與△DCG中,
∵,
∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGA+∠DGA=90°,
∴△DGB為等腰直角三角形,
∴∠BDG=45°.
(3)解:延長AB、FG交于H,連接HD.
∵AD∥GF,AB∥DF,
∴四邊形AHFD為平行四邊形
∵∠ABC=120°,AF平分∠BAD
∴∠DAF=30°,∠ADC=120°,∠DFA=30°
∴△DAF為等腰三角形
∴AD=DF,
∴CE=CF,
∴平行四邊形AHFD為菱形
∴△ADH,△DHF為全等的等邊三角形
∴DH=DF,∠BHD=∠GFD=60°
∵FG=CE,CE=CF,CF=BH,
∴BH=GF
在△BHD與△GFD中,
∵ ,
∴△BHD≌△GFD,
∴∠BDH=∠GDF
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,將△ACE沿著AE折疊以后C點正好落在AB邊上的點D處.
(1)當∠B=28°時,求∠AEC的度數(shù);
(2)當AC=6,AB=10時,
①求線段BC的長;
②求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠BAC=90°,BE是△ABC的角平分線,ED⊥BC于點D,連接AD.
(1)請你寫出圖中所有的等腰三角形;
(2)若BC=10,求AB+AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與理解:
三角形中一邊中點與這邊所對頂點的線段稱為三角形的中線。
三角形的中線的性質(zhì):三角形的中線等分三角形的面積。
即如圖1,AD是中BC邊上的中線,則,
理由:,,
即:等底同高的三角形面積相等。
操作與探索:
在如圖2至圖4中,的面積為a。
(1)如圖2,延長的邊BC到點D,使CD=BC,連接DA,若的面積為,則(用含a的代數(shù)式表示);
(2)如圖3,延長的邊BC到點D,延長邊CA到點E,使CD=BC,AE=CA,連接DE,若的面積為,則_________(用含a的代數(shù)式表示);
(3)在圖3的基礎上延長AB到點F,使BF=AB,連接FD,F(xiàn)E,得到(如圖4),若陰影部分的面積為,則________(用含a的代數(shù)式表示)
(4)拓展與應用:
如圖5,已知四邊形ABCD的面積是a;E,F,G,H分別是AB,BC,CD的中點,求圖中陰影部分的面積?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在六邊形ABCDEF中,∠A+∠B+∠E+∠F=α,CP、DP分別平分∠BCD、∠CDE,則∠P的度數(shù)是( 。
A. α-180°B. 180°-C. D. 360°-
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500米,先到終點的人原地休息.已知甲先出發(fā)2秒.在跑步過程中,甲、乙兩人的距離y(米)與乙出發(fā)的時間t(秒)之間的關系如圖所示,給出以下結(jié)論:①a=8;②b=92;③c=123.其中正確的是( )
A.①②③
B.僅有①②
C.僅有①③
D.僅有②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】題目:如圖,在△ABC中,點D是BC邊上一點,連結(jié)AD,若AB=10,AC=17,BD=6,AD=8,解答下列問題:
(1)求∠ADB的度數(shù);
(2)求BC的長.
小強做第(1)題的步驟如下:∵AB2=BD2+AD2
∴△ABD是直角三角形,∠ADB=90°.
(1)小強解答第(1)題的過程是否完整,如果不完整,請寫出第(1)題完整的解答過程
(2)完成第(2)題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是邊AB的高線,動點E從點A出發(fā),以每秒1個單位的速度沿射線AC運動;同時,動點F從點C出發(fā),以相同的速度沿射線CB運動.設E的運動時間為t(s)(t>0).
(1)AE= (用含t的代數(shù)式表示),∠BCD的大小是 度;
(2)點E在邊AC上運動時,求證:△ADE≌△CDF;
(3)點E在邊AC上運動時,求∠EDF的度數(shù);
(4)連結(jié)BE,當CE=AD時,直接寫出t的值和此時BE對應的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于m的方程(m-16)=7的解也是關于x的方程2(x-3)-n=52的解.
(1)求m,n的值;
(2)已知∠AOB=m°,在平面內(nèi)畫一條射線OP,恰好使得∠AOP=n∠BOP,求∠BOP.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com