【題目】甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500米,先到終點的人原地休息.已知甲先出發(fā)2秒.在跑步過程中,甲、乙兩人的距離y(米)與乙出發(fā)的時間t(秒)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=123.其中正確的是( )

A.①②③
B.僅有①②
C.僅有①③
D.僅有②③

【答案】A
【解析】甲的速度為:8÷2=4(米/秒);

乙的速度為:500÷100=5(米/秒);

b=5×100﹣4×(100+2)=92(米);

5a﹣4×(a+2)=0,

解得a=8,

c=100+92÷4=123(秒),

∴正確的有①②③.

故答案為:A.

本題是一道一次函數(shù)的綜合試題,考查了路程=速度×時間的運用,追擊問題的運用,由圖象可以看出甲2秒跑了8米可以求出甲的速度為4米/秒,b是表示乙跑到終點時甲乙的距離,c表示乙出發(fā)后甲到達終點的時間.根據(jù)總路程÷速度-甲先走的時間即是c的值,即可得到所求結論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線Y=ax2+bx一3與X軸相交于A(一1,0),B(3,0),P為拋物線上第四象限上的點.

(1)求該拋物線的函數(shù)關系式.
(2)過點P作PD⊥X軸于點D,PD交BC于點E,當線段PE的長度最大時,求點P的坐標.
(3)當線段PE的長度最大時,作PF ⊥BC于點F,連結DF.在射線PD上有一點Q,滿足∠PQB=∠DFB,問在坐標軸上是否存在一點R,使得S△RBE=S△QBE;如果存在,直接寫出R點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,AM∥CN,點 B 為平面內一點,AB⊥BC B,過 B BD⊥ AM.

(1)求證:∠ABD=∠C;

(2)如圖 2,在(1)問的條件下,分別作∠ABD、∠DBC 的平分線交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,

①求證:∠ABF=∠AFB;

②求∠CBE 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小晶設計的“作互相垂直的兩條直線”的尺規(guī)作圖過程.

作法:如圖,

在平面內任選一點O,作射線OA,OB;

O為圓心,以任意長為半徑作弧,分別交OA于點C,交OB于點D;

分別以CD為圓心,以大于CD的同樣長為半徑作弧,兩弧交于∠AOB內部一點P;

連接CPPD;

作直線OP,作直線CD,兩直線相交于點E;則直線CDOP就是所求作的互相垂直的兩條直線.根據(jù)小晶設計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵OC   ,CP   ,OPOP

∴△OPC≌△OPD

∴∠AOP=∠BOP

OE是△COD的高線(   )(填推理的依據(jù))

OECD

CDOP互相垂直

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.

(1)在圖1中證明CE=CF;

(2)若∠ABC=90°,GEF的中點(如圖2),直接寫出∠BDG的度數(shù);

(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0)、B(1,0)、C(0,3)三點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合),過點P作y軸的垂線,垂足點為E,連接AE.

(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PAE的面積為S,求S與x之間的函數(shù)關系式,直接寫出自變量x的取值范圍,并求出S的最大值;
(3)在(2)的條件下,當S取到最大值時,過點P作x軸的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應點為點P′,求出P′的坐標,并判斷P′是否在該拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一張四邊形紙片ABCD,AB=20,BC=16,CD=13,AD=5,對角線ACBC

(1)求AC的長;

(2)求四邊形紙片ABCD的面積;

(3)若將四邊形紙片ABCD沿AC剪開,拼成一個與四邊形紙片ABCD面積相等的三角形,直接寫出拼得的三角形各邊高的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點M在AC邊上,點N從點C出發(fā)沿折線CB﹣BA運動到點A停止,點P是點C關于直線MN的對稱點,連接MP,NP(當點N與點C,A重合時,點P均與點C重合).

(1)若CM=2,
①又當點N在CB上,MP∥BC時,則CN= , MN=
(2)在(1)的條件下,求點P到AB邊的距離的最小值,并求出當取得這個最小值時,點P運動路線的長是多少?(參考數(shù)據(jù):sin54°=cos36°≈ ,sin36°=cos54°≈ ,結果保留π)
(3)設MC=a(a>2),其他條件不變,當有且只能有唯一的點P落在線段AB上時,直接寫出a的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】5張邊長為2的正方形紙片,4張邊長分別為2、3的矩形紙片,6張邊長為3的正方形紙片,從其中取出若干張紙片,且每種紙片至少取一張,把取出的這些紙片拼成一個正方形(原紙張進行無空隙、無重疊拼接),則拼成正方形的邊長最大為

A. 6B. 7C. 8D. 9

查看答案和解析>>

同步練習冊答案