【題目】已知點(diǎn)是反比例函數(shù)圖象上的動(dòng)點(diǎn),軸,軸,分別交反比例函數(shù)的圖象于點(diǎn)、,交坐標(biāo)軸于,且,連接.現(xiàn)有以下四個(gè)結(jié)論:①;②在點(diǎn)運(yùn)動(dòng)過程中,的面積始終不變;③連接,則;④不存在點(diǎn),使得.其中正確的結(jié)論的序號(hào)是__________

【答案】①②③

【解析】

①由反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征用函數(shù)a的代數(shù)式表示出來(lái)b,并找出點(diǎn)C坐標(biāo),根據(jù)AC=3CD,即可得出關(guān)于k的一元一次方程,解方程即可得出結(jié)論;

②根據(jù)①得出A、C的坐標(biāo),由ABx軸找出B點(diǎn)的坐標(biāo),由此即可得出AB、AC的長(zhǎng)度,利用三角形的面積公式即可得出結(jié)論;

③已知B(,)C(a,),D(a,0),E(0,)四點(diǎn)坐標(biāo),B、CD、E四點(diǎn)坐標(biāo),經(jīng)過B、C兩點(diǎn)的直線斜率k1=,經(jīng)過D、E兩點(diǎn)的直線斜率k2=,得出,即

④先假設(shè),得到對(duì)應(yīng)邊成比例,列出關(guān)于a的等式,看a是否有解,即可求解.

①∵A(a,b),且A在反比例函數(shù)的圖象上,

ACy軸,且C在反比例函數(shù)的圖象上,
C(a,)

又∵AC=3CD,

AD=4CD,即

k=2

故①正確

②由①可知:A(a,),C(a,)

ABx軸,

B點(diǎn)的縱坐標(biāo)為

∵點(diǎn)B在反比例函數(shù)的函數(shù)圖象上,
,解得:x=
∴點(diǎn)B(,),
AB=a=AC==

S=AB×AC=××=

∴在點(diǎn)A運(yùn)動(dòng)過程中,ABC面積不變,始終等于

故②正確

③連接DE,如圖所示

B(,),C(a,)

∴經(jīng)過BC兩點(diǎn)的直線斜率k1=

軸,

D(a,0),E(0,)

∴經(jīng)過DE兩點(diǎn)的直線斜率k2=

,即

故③正確

④假設(shè)

解得

∴當(dāng)時(shí),

故④錯(cuò)誤

故答案為:①②③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列解題過程:

例:若代數(shù)式,求a的取值.

解:原式=,

當(dāng)a<2時(shí),原式=(2-a)+(4-a)=6-2a=2,解得a2(舍去)

當(dāng)2≤a4時(shí),原式=(a-2)+(4-a)=2=2,等式恒成立;

當(dāng)a≥4時(shí),原式=(a-2)+(a-4)=2a62,解得a=4;

所以,a的取值范圍是2≤a≤4

上述解題過程主要運(yùn)用了分類討論的方法,請(qǐng)你根據(jù)上述理解,解答下列問題:

(1)當(dāng)3≤a≤7時(shí),化簡(jiǎn):_________;

(2)請(qǐng)直接寫出滿足5a的取值范圍__________;

(3)6,求a的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于二次函數(shù)yx2+2x+3的圖象有以下說(shuō)法:其中正確的個(gè)數(shù)是( 。

①它開口向下;②它的對(duì)稱軸是過點(diǎn)(﹣1,3)且平行于y軸的直線;③它與x軸沒有公共點(diǎn);④它與y軸的交點(diǎn)坐標(biāo)為(3,0).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是菱形,,點(diǎn)點(diǎn)出發(fā),沿運(yùn)動(dòng),過點(diǎn)作直線的垂線,垂足為,設(shè)點(diǎn)運(yùn)動(dòng)的路程為,的面積為,則下列圖象能正確反映之間的函數(shù)關(guān)系的是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在教室前面墻壁處安裝了一個(gè)攝像頭,當(dāng)恰好觀測(cè)到后面墻壁與底面交接處點(diǎn)時(shí),攝像頭俯角約為,受安裝支架限制,攝像頭觀測(cè)的俯角最大約為,已知攝像頭安裝點(diǎn)高度約為米,攝像頭與安裝的墻壁之間距離忽略不計(jì),

求教室的長(zhǎng)(教室前后墻壁之間的距離的值);

若第一排桌子前邊緣與前面墻壁的距離米, 桌子的高度米,那么第一排桌子是否在監(jiān)控范圍內(nèi)?如果不在,應(yīng)該怎樣移動(dòng)? (,精確到)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)圖象的頂點(diǎn)在一次函數(shù)的圖象上,則稱的中雅函數(shù),如:的中雅函數(shù).

(1)判斷二次函數(shù)是否為一次函數(shù)的中雅函數(shù),并說(shuō)明理由;

(2)若關(guān)于的一次函數(shù)的中雅函數(shù)軸兩個(gè)交點(diǎn)間的距離為,求直線與坐標(biāo)軸所圍三角形的面積;

(3)已知關(guān)于的一次函數(shù)的中雅函數(shù)為,與平行的直線交中雅函數(shù)的圖象于、兩點(diǎn),若軸上有且僅有一個(gè)點(diǎn),使得,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與y軸交于C(08),且與反比例函數(shù)y=(x0)的圖象在第一象限內(nèi)交于A(3,a),B(1,b)兩點(diǎn).

⑴求AOC的面積;

⑵若=4,求反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,BCAD,BCAD,點(diǎn)EAD的中點(diǎn),點(diǎn)FAE的中點(diǎn),ACCD,連接BE、CECF

1)判斷四邊形ABCE的形狀,并說(shuō)明理由;

2)如果AB4,∠D30°,點(diǎn)PBE上的動(dòng)點(diǎn),求PAF的周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD100°,∠B=∠D90°,在BC、CD上分別找一個(gè)點(diǎn)MN,使AMN的周長(zhǎng)最小,則∠AMN+ANM的度數(shù)為( 。

A.130°B.120°C.160°D.100°

查看答案和解析>>

同步練習(xí)冊(cè)答案