【題目】已知橢圓E: =1(a>b>0)的左焦點(diǎn)F1(﹣ ,0),若橢圓上存在一點(diǎn)D,滿足以橢圓短軸為直徑的圓與線段DF1相切于線段DF1的中點(diǎn)F
(1)求橢圓E的方程;
(2)過(guò)坐標(biāo)原點(diǎn)O的直線交橢圓W: =1于P、A兩點(diǎn),其中點(diǎn)P在第一象限,過(guò)P作x軸的垂線,垂足為C,連結(jié)AC并延長(zhǎng)交橢圓W于B,求證:PA⊥PB.

【答案】
(1)

解:連接DF2,F(xiàn)O(O為原點(diǎn),F(xiàn)2為右焦點(diǎn)),由題意知:橢圓的右焦點(diǎn)為 ,

因?yàn)镕O是△DF1F2的中位線,且DF1⊥FO,所以|DF2|=2|FO|=2b,

所以|DF1|=2a﹣|DF2|=2a﹣2b,故 ,

在Rt△FOF1中, ,

即b2+(a﹣b)2=c2=5,又b2+5=a2,解得a2=9,b2=4,

所以橢圓E的方程為


(2)

解:由(Ⅰ)得橢圓W的方程為 ,

設(shè)P(m,n),則A(﹣m,﹣n),C(m,0),

, ,直線

聯(lián)立方程組 ,化簡(jiǎn)得 ,

因?yàn)閤A=﹣m,所以 ,則

所以 ,

則kPAkPB=﹣1,即PA⊥PB.


【解析】(I)用a,b,c表示出△OF1F的邊長(zhǎng),利用勾股定理列方程解出a,b,即可;(II)設(shè)P(m,n),用m,n表示出直線AC的方程,求出B點(diǎn)坐標(biāo),計(jì)算PA,PB的斜率即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,滿足y的值隨x的值增大而增大的是( 。
A.y=﹣2x
B.y=3x﹣1
C.y=
D.y=x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題: ①回歸直線 恒過(guò)樣本中心點(diǎn)
②“x=6”是“x2﹣5x﹣6=0”的必要不充分條件;
③“x0∈R,使得x02+2x0+3<0”的否定是“對(duì)x∈R,均有x2+2x+3>0”;
④“命題p∨q”為真命題,則“命題p∧q”也是真命題.
其中真命題的個(gè)數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 ,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C 的極坐標(biāo)方程為
(1)寫(xiě)出直線l的普通方程及圓C 的直角坐標(biāo)方程;
(2)點(diǎn)P是直線l上的,求點(diǎn)P 的坐標(biāo),使P 到圓心C 的距離最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,數(shù)列 的前n項(xiàng)和為Sn , 數(shù)列{bn}的通項(xiàng)公式為bn=n﹣8,則bnSn的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《張邱建算經(jīng)》是中國(guó)古代數(shù)學(xué)史上的杰作,該書(shū)中有首古民謠記載了一數(shù)列問(wèn)題:“南山一棵竹,竹尾風(fēng)割斷,剩下三十節(jié),一節(jié)一個(gè)圈.頭節(jié)高五寸 , 頭圈一尺三 . 逐節(jié)多三分 , 逐圈少分三 . 一蟻往上爬,遇圈則繞圈.爬到竹子頂,行程是多遠(yuǎn)?”(注釋:①第一節(jié)的高度為0.5尺;②第一圈的周長(zhǎng)為1.3尺;③每節(jié)比其下面的一節(jié)多0.03尺;④每圈周長(zhǎng)比其下面的一圈少0.013尺) 問(wèn):此民謠提出的問(wèn)題的答案是(
A.72.705尺
B.61.395尺
C.61.905尺
D.73.995尺

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,BD=2AD=8,AB=4
(Ⅰ)證明:平面PBD⊥平面PAD;
(Ⅱ)求二面角B﹣PA﹣D的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=(x2﹣2ax)lnx+2ax﹣ x2 , 其中a∈R.
(1)若a=0,且曲線f(x)在x=t處的切線l過(guò)原點(diǎn),求直線l的方程;
(2)求f(x)的極值;
(3)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),證明f(x1)+f(x2)< a2+3a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為: ,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系. (Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)已知直線l1 ,射線 與曲線C的交點(diǎn)為P,l2與直線l1的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案