【題目】在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2)、B(2,0),C(4,2).
(1)在平面直角坐標(biāo)系中畫(huà)出△ABC;
(2)若將(1)中的△ABC平移,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B′坐標(biāo)為(6,2),畫(huà)出平移后的△A′B′C′;
(3)求△A′B′C′的面積.
【答案】(1)見(jiàn)解析;
(2)見(jiàn)解析;
(3)△A′B′C′的面積為10.
【解析】
(1)根據(jù)點(diǎn)A、B、C的坐標(biāo)描點(diǎn),從而可得到△ABC;
(2)利用點(diǎn)B和B′的坐標(biāo)關(guān)系可判斷△ABC先向右平移4個(gè)單位,再向上平移2個(gè)單位得到△A′B′C′,利用此平移規(guī)律寫(xiě)出A′、C′的坐標(biāo),然后描點(diǎn)即可得到△A′B′C′;
(3)用一個(gè)矩形的面積分別減去三個(gè)三角形的面積去計(jì)算△A′B′C′的面積.
(1)如圖,△ABC為所作;
(2)如圖,△A′B′C′為所作;
(3)△A′B′C′的面積=6×4×2×6×2×4×4×2=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線(xiàn)以每秒個(gè)單位的速度向點(diǎn)方向運(yùn)動(dòng),連接,把沿翻折,得到.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為.
(1)若,當(dāng)三點(diǎn)在同一直線(xiàn)上時(shí),求的值;
(2)若點(diǎn)到直線(xiàn)的距離等于,求的值;
(3)若的最小值為,直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線(xiàn)段OB、OC的長(zhǎng)(OB<OC)是方程x2﹣10x+16=0的兩個(gè)根,且拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=﹣2.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線(xiàn)的表達(dá)式;
(3)連接AC、BC,若點(diǎn)E是線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說(shuō)明S是否存在最大值?若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程.
()若方程有實(shí)數(shù)根,求k的取值范圍;
()若方程有兩個(gè)互為相反數(shù)的實(shí)數(shù)根,求k的值,并求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=4,BC=10,E是直線(xiàn)AD上任意一點(diǎn)(不與點(diǎn)A重合),點(diǎn)A關(guān)于直線(xiàn)BE的對(duì)稱(chēng)點(diǎn)為A′,AA′所在直線(xiàn)與直線(xiàn)BC交于點(diǎn)F.
(1)如圖①,當(dāng)點(diǎn)E在線(xiàn)段AD上時(shí),①若△ABE ∽△DEC,求AE的長(zhǎng);
②設(shè)AE=x,BF=y,求y與x的函數(shù)表達(dá)式.
(2)線(xiàn)段DA′的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)l1:y=kx+b與直線(xiàn)l2:y=bx+k在同一坐標(biāo)系中的大致位置是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在小山的東側(cè)A莊,有一熱氣球,由于受西風(fēng)的影響,以每分鐘35米的速度沿著與水平方向成75度角的方向飛行,40分鐘時(shí)到達(dá)C處,此時(shí)氣球上的人發(fā)現(xiàn)氣球與山頂P點(diǎn)及小山西側(cè)的B莊在一條直線(xiàn)上,同時(shí)測(cè)得B莊的俯角為30度,又在A莊測(cè)得山頂P的仰角為45度,求A莊與B莊的距離___________,山高__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),矩形的頂點(diǎn)、,將矩形的一個(gè)角沿直線(xiàn)折疊,使得點(diǎn)落在對(duì)角線(xiàn)上的點(diǎn)處,折痕與軸交于點(diǎn).
(1)求線(xiàn)段的長(zhǎng)度;
(2)求直線(xiàn)所對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)若點(diǎn)在線(xiàn)段上,在線(xiàn)段上是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)相交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為4.
(1)求點(diǎn)A的坐標(biāo)及一次函數(shù)的解析式;
(2)若直線(xiàn)x=2與反比例函數(shù)和一次函數(shù)的圖象分別交于點(diǎn)B、C,求線(xiàn)段BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com