【題目】某中學舉行“慶祝中華人民共和國成立70周年”知識預賽,學生會把成績(分)分成五組:A組:;B組:;C組:;D組:;E組:.
統(tǒng)計后繪制成如下兩個統(tǒng)計圖(不完整).
(1)直接填空:
①的值為_________;
②在圖2中,組的扇形圓心角的度數(shù)為_________.
(2)在圖1中,畫出所對應的條形圖;
(3)若學生會計劃從預賽中選拔前30名進入復賽,則進入復賽的成績應不低于多少分?
【答案】(1)①; ②;(2)詳見解析;(3)進入復賽的成績應不低于分.
【解析】
(1)①先根據(jù)A部分由40人所占圓心角36°,求出樣本容量,然后根據(jù)D部分所占的圓心角為135°即可求出m的值;
②用360°乘以C部分人數(shù)所占的百分比即可;
(2)用樣本容量乘以B部分人數(shù)所占的百分比即可;
(3)求出E部分所占人數(shù),然后根據(jù)條形統(tǒng)計圖解答即可.
解:
(1)①40÷=400,400×=;
②360°×=.
(2)所畫條形圖如圖所示,
(3)由(1)可得組的人數(shù)為:
(人),
所以前名的成績應不低于分,
即進入復賽的成績應不低于分.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點D,并與邊AC相交于另一點F.
(1)求證:BD是⊙O的切線.
(2)若AB=,E是半圓上一動點,連接AE,AD,DE.
填空:
①當的長度是____________時,四邊形ABDE是菱形;
②當的長度是____________時,△ADE是直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校在八年級新生中舉行了全員參加的數(shù)學應用能力大賽,試卷題目共10題,每題10分.現(xiàn)分別從三個班中各隨機取10名同學的成績(單位:分),收集數(shù)據(jù)如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理數(shù)據(jù):
人數(shù) 班級 | 60分人數(shù) | 70分人數(shù) | 80分人數(shù) | 90分人數(shù) | 100分人數(shù) |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
平均數(shù) | 中位數(shù) | 眾數(shù) | |
1班 | 83 | 80 | 80 |
2班 | 83 | ||
3班 | 80 | 80 |
分析數(shù)據(jù):
根據(jù)以上信息回答下列問題:
(1)請直接寫出表格中,,,的值;
(2)比較這三組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù),你認為哪個班的成績比較好?請說明理由(寫兩條支持你結論的理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小強的錢包內(nèi)有10元錢、20元錢和50元錢的紙幣各1張.
(1)若從中隨機取出1張紙幣,求取出紙幣的金額是20元的概率;
(2)若從中隨機取出2張紙幣,求取出紙幣的總額可購買一件51元的商品的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調查發(fā)現(xiàn):若每箱以50元的價格出售,平均每天銷售80箱,價格每提高1元,平均每天少銷售2箱.
⑴.求平均每天銷售量(箱)與銷售價(元/箱)之間的函數(shù)關系式;
⑵.求該批發(fā)商平均每天的銷售利潤(元)與銷售價(元/箱)之間的函數(shù)關系式;
⑶.當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(﹣1,5),點B的坐標為(﹣3,1).
(1)在平面直角坐標系中作線段AB關于y軸對稱的線段A1B1(A與A1,B與B1對應);
(2)求△AA1B1的面積;
(3)在y軸上存在一點P,使PA+PB的值最小,則點P的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷MD、MN的數(shù)量關系和位置關系,得出結論.
結論1:DM、MN的數(shù)量關系是 ;
結論2:DM、MN的位置關系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉180°,其他條件不變,則(2)中的兩個結論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△OAB中,OA=OB=10,∠AOB=80°,以點O為圓心,6為半徑的優(yōu)弧弧MN分別交OA、OB于點M,N.
(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉80°得,求證:AP=BP;
(2)點T在左半弧上,若AT與弧相切,求點T到OA的距離;
(3)設點Q在優(yōu)弧弧MN上,當△AOQ的面積最大時,直接寫出∠BOQ的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com