在直角坐標系x0y中,已知A(1,1),在x軸上確定點P,使△AOP為等腰三角形,則符合條件的點P共有(     )個
A.1個B.2個C.3個D.4個
D

試題分析:要使△AOP為等腰三角形,只需分兩種情況考慮:OA當?shù)走吇騉A當腰.當OA是底邊時,則點P即為OA的垂直平分線和x軸的交點;當OA是腰時,則點P即為分別以O、A為圓心,以OA為半徑的圓和x軸的交點(點O除外).
(1)若AO作為腰時,有兩種情況,當A是頂角頂點時,P是以A為圓心,以OA為半徑的圓與x軸的交點,共有1個,若OA是底邊時,P是OA的中垂線與x軸的交點,有1個
當O是頂角頂點時,P是以O為圓心,以OA為半徑的圓與x軸的交點,有1個;
(2)若OA是底邊時,P是OA的中垂線與x軸的交點,有1個.
以上4個交點沒有重合的.
故選D.
點評:對于底和腰不等的等腰三角形,若條件中沒有明確哪邊是底哪邊是腰時,應在符合三角形三邊關系的前提下分類討論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題6分)如圖(第18題①),是日全食的初虧階段,請用直尺和圓規(guī)作圖,把圖(第18題②)中的太陽補充完整.不寫作法,但保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△BDF中,BD=BF,以為直徑的與邊DF相交于點,過E作BF的垂線,垂足為C,交BD延長線于點A.

(1)求證:AC與⊙O相切.
(2)若,求的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知等腰△ABC的三個頂點都在半徑為5的⊙O上,如果底邊BC的長為8,那么BC邊上的高為      。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知⊙O和⊙O'相切,它們的半徑分別為3和4,則OO'=________。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如下圖,已知、兩點的坐標分別是(,0)(0,2),是△外接圓上的一點,且∠=45o,則點的坐標是             

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,∠MAN=45°,B為AM上的一個定點, 若點P在射線AN上,以P為圓心,PA為半徑的圓與射線AN的另一個交點為C,請確定⊙P的位置,使BC恰與⊙P相切.

(1)畫出圖形(不要求尺規(guī)作圖,不要求寫畫法);
(2)連結BP并填空:
① ∠ABC=       °;
② 比較大小:∠ABP    ∠CBP.(用“>”、“<”或“=”連接)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,小明作了一頂圓錐形紙帽,已知紙帽底面圓的半徑OB為0cm,母線長BS為20cm,則圓錐形紙帽的側面積為         cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

要對一塊長60m、寬40m的矩形荒地ABCD進行綠化和硬化.

(1)設計方案如圖①所示,矩形P、Q為兩塊綠地,其余為硬化路面,P、Q兩塊綠地周圍的硬化路面寬都相等,并使兩塊綠地面積的和為矩形ABCD面積的,求P、Q兩塊綠地周圍的硬化路面的寬.
(2)某同學有如下設想:設計綠化區(qū)域為相外切的兩等圓,圓心分別為O1和O2,且O1到AB,BC,AD的距離與O2到CD,BC,AD的距離都相等,其余為硬化地面,如圖②所示,這個設想是否成立?若成立,求出圓的半徑;若不成立,說明理由.

查看答案和解析>>

同步練習冊答案