【題目】已知拋物線y=x2-mx+cx軸交于點A(x1,0)B(x2,0),與y軸交于點C(0,c).若△ABC為直角三角形,求c的值

【答案】

【解析】

由△ACO∽△CBO可得OC2=OB·OA,由一元二次方程根據(jù)系數(shù)的關(guān)系可得x1·x2=2c,即OB·OA=-2c,從而可得c2+2c=0,解方程即可求出c的值.

解:∵ABC為直角三角形,

∴∠ACB=90°,

∵∠ACO+BCO=90°,∠CBO+BCO=90°,

∴∠ACO=CBO,

∴△ACO∽△CBO,

,

OC2=OB·OA.

y=0時,x2-mx+c=0,

x1·x2=2c

OB·OA=-2c.

C(0,c)

OC=-c,

(-c)2=-2c,

c2+2c=0,

c1=0(舍去),c2=-2.

c的值是-2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與軸、軸分別交于點,過點軸,垂足為.,.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)當時,求x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程。

1)求證:方程有兩個不相等的實數(shù)根;

2)若△ABC的兩邊AB、AC的長是方程的兩個實數(shù)根,第三邊BC的長為5。當△ABC是等腰三角形時,求k的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】,、為線段上的兩點,,且,若,,則的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,ACBD相交于點O,過點BBEAC,聯(lián)結(jié)OEBC于點F,點FBC的中點.

1)求證:四邊形AOEB是平行四邊形;

2)如果∠OBC=∠E,求證:BOOCABFC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象經(jīng)過矩形OABC的對角線的交點M,分別與ABBC相交于點D、E,則下列結(jié)論正確的是______(填序號).

;②連接MD,SODM=2SOCE,;③;④連接,則BED∽△BCA.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1B1C1的位置,ABA1C1相交于點D,ACA1C1、BC1分別交于點E. F.

(1)求證:△BCF≌△BA1D.

(2)當∠C=α度時,判定四邊形A1BCE的形狀并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=x+nx軸、y軸分別交于B、C兩點,拋物線y=ax2+bx+3(a0)C、B兩點,交x軸于另一點A,連接AC,且tanCAO=3

(1)求拋物線的解析式;

(2)若點P是射線CB上一點,過點Px軸的垂線,垂足為H,交拋物線于Q,設(shè)P點橫坐標為t,線段PQ的長為d,求出dt之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;

(3)(2)的條件下,當點P在線段BC上時,設(shè)PH=e,已知d,e是以y為未知數(shù)的一元二次方程:y2(m+3)y+(5m22m+13)=0 (m為常數(shù))的兩個實數(shù)根,點M在拋物線上,連接MQ、MH、PM,且.MP平分QMH,求出t值及點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示A、B、C、D四點在⊙O上的位置,其中=180°,且=,=.若阿超在上取一點P,在上取一點Q,使得∠APQ=130°,則下列敘述何者正確( )

A. Q點在上,且>B. Q點在上,且<

C. Q點在上,且>D. Q點在上,且<

查看答案和解析>>

同步練習冊答案