【題目】如圖,二次函數(shù)y=-x2+(n-1)x+3的圖像與y軸交于點A,與x軸的負(fù)半軸交于點B(-2,0)
(1)求二次函數(shù)的解析式;
(2)點P是這個二次函數(shù)圖像在第二象限內(nèi)的一線,過點P作y軸的垂線與線段AB交于點C,求線段PC長度的最大值.
【答案】(1);(2)
【解析】
(1)將點B坐標(biāo)代入即可求出解析式;
(2)先求出直線AB的解析式為,設(shè)點P的坐標(biāo)為(x,),則點C的坐標(biāo)為(, ),列出線段PC的關(guān)系式配方即可得到PC的最大值.
(1)將點B(-2,0)代入y=-x2+(n-1)x+3中,得-4-2(n-1)+3=0,
解得n=,
∴;
(2)當(dāng)x=0時得y=3,
∴A(0,3),
設(shè)直線AB的解析式為y=kx+b,
,解得,
∴直線AB的解析式為,
設(shè)點P的坐標(biāo)為(x,),由題意可知點C的縱坐標(biāo)是,代入,則可得點C的坐標(biāo)為(, ),
因為C在P的右側(cè),
∴PC==,
因為點P是這個二次函數(shù)圖像在第二象限內(nèi)的一點,所以,
∴當(dāng)時,PC長度的最大值是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點D是邊BC上的動點,連接AD,點C關(guān)于直線AD的對稱點為點E,射線BE與射線AD交于點F.
(1)在圖1中,依題意補全圖形;
(2)記(),求的大;(用含的式子表示)
(3)若△ACE是等邊三角形,猜想EF和BC的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD =90°,AC是對角線.點E在BC的延長線上,且∠CED =∠BAC.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)BA與CD的延長線交于點F,若DE∥AC,AB=4,AD =2,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+2ax-3與x軸交于A、B(1,0)兩點(點A在點B的左側(cè)),與y軸交于點C,將拋物線沿y軸平移m(m>0)個單位,當(dāng)平移后的拋物線與線段OA有且只有一個交點時,則m的取值范圍是_______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知矩形ABCD,AB=4,AD=3,點E為邊DC上不與端點重合的一個動點,連接BE,將BCE沿BE翻折得到BEF,連接AF并延長交CD于點G,則線段CG的最大值是( )
A.1B.1.5C.4-D.4-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】題目:為了美化環(huán)境,某地政府計劃對轄區(qū)內(nèi)的土地進(jìn)行綠化.為了盡快完成任務(wù),實際平均每月的綠化面積是原計劃的1.5倍,結(jié)果提前2個月完成任務(wù).求原計劃平均每月的綠化面積.
甲同學(xué)所列的方程為
乙同學(xué)所列的方程為
(1)甲同學(xué)所列的方程中表示 .乙同學(xué)所列的方程中表示 .
(2)任選甲、乙兩同學(xué)的其中一個方法解答這個題目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形紙片滿足.將此矩形紙片按下列順序折疊,則圖4中的長為___________________(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,在和中,,連接交于點.求證:;并直接寫出______.
(2)類比探究:如圖2,在和中,,連接交的延長線于點.請判斷的值及的度數(shù).
(3)拓展延伸:在(2)的條件下,將繞點在平面內(nèi)旋轉(zhuǎn),所在直線交于點.若,請直接寫出當(dāng)點與點重合時的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對垃圾進(jìn)行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護(hù)環(huán)境.為了檢查垃圾分類的落實情況,某居委會成立了甲、乙兩個檢查組,采取隨機抽查的方式分別對轄區(qū)內(nèi)的A,B,C,D四個小區(qū)進(jìn)行檢查,并且每個小區(qū)不重復(fù)檢查.
(1)甲組抽到A小區(qū)的概率是多少;
(2)請用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時乙組抽到C小區(qū)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com