【題目】如圖,在ABC中,AB=AC,EAC上,經(jīng)過A,B,E三點(diǎn)的圓OBC于點(diǎn)D,且D點(diǎn)是弧BE的中點(diǎn),

(1)求證AB是圓的直徑;

(2)AB=8,C=60°,求陰影部分的面積;

(3)當(dāng)∠A為銳角時(shí),試說明∠A與∠CBE的關(guān)系.

【答案】(1)證明見解析;(2);(3)證明見解析.

【解析】

(1)連接AD,根據(jù)等腰三角形的三線合一得到ADBC,根據(jù)圓周角定理的推論證明;
(2)連接OE,根據(jù)扇形面積公式計(jì)算即可.

(3)AB是直徑,根據(jù)直徑所對(duì)的圓周角是直角得到∠BEA=90°,EBC+C=CAD+C=90° ,根據(jù)同角的余角相等得到∠EBC=CAD,即可得到∠A與∠CBE的關(guān)系.

(1)連結(jié)AD,

D是弧BE中點(diǎn),

∴∠BAD=CAD-

又∵AB=AC,

ADBD

∴∠ADB=90°,

AB是直徑.

(2)連結(jié)OE,S扇形AOE= ,

SBOE=,

S陰影=+

(3)由(1)AB是直徑,

∴∠BEA=90°

∴∠EBC+C=CAD+C=90° ,

∴∠EBC=CAD

∴∠CAB=2EBC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宜興在“創(chuàng)建文明城市”行動(dòng)中,某社區(qū)計(jì)劃對(duì)面積為2160m2的區(qū)域進(jìn)行綠化.經(jīng)投標(biāo),由甲、乙兩個(gè)工程隊(duì)來完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為480m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.

(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積;

(2)設(shè)甲工程隊(duì)施工x天,乙工程隊(duì)施工y天,剛好完成綠化任務(wù),求y與x的函數(shù)表達(dá)式;

(3)若甲隊(duì)每天綠化費(fèi)用是0.8萬元,乙隊(duì)每天綠化費(fèi)用為0.35萬元,且甲、乙兩隊(duì)施工的總天數(shù)不超過26天,則如何安排甲乙兩隊(duì)施工的天數(shù),使施工總費(fèi)用最低?并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某品牌的飲水機(jī)接通電源后就進(jìn)入自動(dòng)程序開機(jī)加熱到水溫 100℃, 停止加熱,水溫開始下降,此時(shí)水溫 y(℃)與開機(jī)后用時(shí) x(min)成反比 例關(guān)系直至水溫降至 30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開機(jī),重 復(fù)上述自動(dòng)程序.若在水溫為 30℃時(shí),接通電源后,水溫 y(℃)和時(shí)間 x(min)的關(guān)系如圖所示,水溫從 100℃降到 35℃所用的時(shí)間是________min.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象的對(duì)稱軸為直線x=1,且(x1,y1),(x2,y2)為其圖象上的兩點(diǎn),(

A. x1>x2>1,則(y1-y2)+2a(x1-x2)<0

B. 1>x1>x2,則(y1-y2)+2a(x1-x2)<0

C. x1>x2>1,則(y1-y2)+a(x1-x2)>0

D. 1>x1>x2,則(y1-y2)+a(x1-x2)>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形,,互補(bǔ),以點(diǎn)為頂點(diǎn)作一個(gè)角,角的兩邊分別交線段,于點(diǎn),且,連接,試探究:線段,之間的數(shù)量關(guān)系.

1)如圖(1),當(dāng)時(shí),,之間的數(shù)量關(guān)系為___________.

2)在圖(2)的條件下(即不存在),線段,,之間的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)完成證明;若不成立,請(qǐng)說明理由.

3)如圖(3),在腰長為的等腰直角三角形中,,均在邊上,且,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線y1=x2﹣4x+4的頂點(diǎn)為A,直線y2=kx﹣2k(k≠0),

(1)試說明直線是否經(jīng)過拋物線頂點(diǎn)A;

(2)若直線y2交拋物線于點(diǎn)B,且△OAB面積為1時(shí),求B點(diǎn)坐標(biāo);

(3)過x軸上的一點(diǎn)M(t,0)(0≤t≤2),作x軸的垂線,分別交y1,y2的圖象于點(diǎn)P,Q,判斷下列說法是否正確,并說明理由:

當(dāng)k>0時(shí),存在實(shí)數(shù)t(0≤t≤2)使得PQ=3.

當(dāng)﹣2<k<﹣0.5時(shí),不存在滿足條件的t(0≤t≤2)使得PQ=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山地自行車越來越受中學(xué)生的喜愛.一網(wǎng)店經(jīng)營的一個(gè)型號(hào)山地自行車,今年一月份銷售額為30000元,二月份每輛車售價(jià)比一月份每輛車售價(jià)降價(jià)100元,若銷售的數(shù)量與上一月銷售的數(shù)量相同,則銷售額是27000元.

(1)求二月份每輛車售價(jià)是多少元?

(2)為了促銷,三月份每輛車售價(jià)比二月份每輛車售價(jià)降低了10%銷售,網(wǎng)店仍可獲利35%,求每輛山地自行車的進(jìn)價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并解答問題.

面積與代數(shù)恒等式

通過學(xué)習(xí),我們知道可以用圖1的面積來解釋公式,人們經(jīng)常稱作用面積解釋代數(shù)恒等式實(shí)際上還有一些代數(shù)恒等式也可以用這種形式表示,如可用圖2表示

請(qǐng)根據(jù)閱讀材料,解答下列問題:

1)請(qǐng)寫出圖3所表示的代數(shù)恒等式: ;

2)試畫一個(gè)幾何圖形,使它的面積表示:;

3)請(qǐng)仿照上述方法另寫一個(gè)含有,的代數(shù)恒等式,并畫出與它對(duì)應(yīng)的幾何圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對(duì)角線AC,BD相交于點(diǎn)O,下列結(jié)論中:

①∠ABC=ADC;

AC與BD相互平分;

AC,BD分別平分四邊形ABCD的兩組對(duì)角;

四邊形ABCD的面積S=ACBD.

正確的是 (填寫所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案