【題目】如圖1,一張△ABC紙片,點MN分別是ACBC上兩點.(均只需寫出結論即可

1)若沿直線MN折疊,使C點落在BN上,則∠AMC′∠ACB的數(shù)量關系是     

2)若折成圖2的形狀,猜想∠AMC′∠BNC′∠ACB的數(shù)量關系是   

3)若折成圖3的形狀,猜想∠AMC′、∠BNC′∠ACB的數(shù)量關系是   

4)將上述問題推廣,如圖4,將四邊形ABCD紙片沿MN折疊,使點C、D落在四邊形ABNM的內(nèi)部時,∠AMD′+∠BNC′∠C、∠D之間的數(shù)量關系是       

【答案】(1) ∠AMC′2∠ACB;(2∠AMC′∠BNC′2∠ACB;(3∠AMC′∠BNC′2∠ACB; 。4∠AMD′+∠BNC′2(∠C∠D180°).

【解析】試題分析:(1)根據(jù)折疊性質(zhì)和三角形的外角定理得出結論;

2)先根據(jù)折疊得:CMN=∠CMN,CNM=∠CNM,由兩個平角CMACNB得:AMC′+∠′BNC等于360°與四個折疊角的差,化簡為結果;

3)利用兩次外角定理得出結論;

4)與(2)類似,先由折疊得:DMN=∠DMNCNM=∠CNM,再由兩平角的和為360°得:AMD′+∠BNC′=360°﹣2∠DMN﹣2∠CNM,根據(jù)四邊形的內(nèi)角和得:DMN+∠CNM=360°﹣∠C﹣∠D,代入前式可得結論.

試題解析:解:(1)由折疊得:ACB=∠MCC,∵∠AMC′=∠ACB+∠MCC,∴∠AMC′=2∠ACB;

故答案為:AMC′=2∠ACB;

2)猜想:AMC′+∠BNC′=2∠ACB,理由是:

由折疊得:CMN=∠CMN,CNM=∠CNM∵∠CMA+∠CNB=360°,∴∠AMC′+∠′BNC′=360°﹣∠CMN﹣∠CMN﹣∠CNM﹣∠CNM=360°﹣2∠CMN﹣2∠CNM,∴∠AMC′+∠BNC′=2180°﹣∠CMN﹣∠CNM=2∠ACB;

3∵∠AMC′=∠MDC+∠CMDC=∠C′+∠BNC,∴∠AMC′=∠C′+∠BNC′+∠C,∵∠C=∠C,∴∠AMC′=2∠C+∠BNC,∴∠AMC′﹣∠BNC′=2∠ACB;

4)由折疊得:DMN=∠DMN,CNM=∠CNM∵∠DMA+∠CNB=360°,∴∠AMD′+∠BNC′=360°﹣2∠DMN﹣2∠CNM,∵∠DMN+∠CNM=360°﹣∠C﹣∠D,∴∠AMD′+∠BNC′=360°﹣2360°﹣∠C﹣∠D=2C+∠D-180°),故答案為:AMD′+∠BNC′=2C+∠D﹣180°).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上的點A、O、B、C、D分別表示﹣30、2.5、5、﹣6,回答下列問題.

1O、B兩點間的距離是   

2AD兩點間的距離是   

3C、B兩點間的距離是   

4請觀察思考,若點A表示數(shù)m,且m0,點B表示數(shù)n,且n0,那么用含m,n的代數(shù)式表示A、B兩點間的距離是   

5)根據(jù)(14)中點表示的數(shù)與兩點間的距離之間的關系,歸納:若點A表示數(shù)a,點B表示數(shù)b,那么A、B兩點間的距離是 (用含ab的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡下列各式
(1)4a2﹣3b2+a2+2b2;
(2)3(4x﹣2y)﹣3(8x﹣y).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新疆近年旅游業(yè)發(fā)展快速,每年都吸引眾多海內(nèi)外游客前來觀光、旅游,據(jù)有關部門統(tǒng)計報道:2016年全疆共接待游客3354萬人次,將3354萬用科學計數(shù)法表示為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是(
A.x3x2=2x6
B.x4x2=x8
C.(﹣x23=﹣x6
D.(x32=﹣x5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在0、1、2、3中,哪個數(shù)是方程3x﹣2=4x﹣3的解(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解七年級680名學生每天完成作業(yè)所用時間的情況,趙老師隨機抽取了80名學生進行調(diào)查,則該調(diào)查的個體是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現(xiàn)狀,對該班部分學生進行調(diào)查,把調(diào)查結果分為四類(A.特別好,B.好,C.一般,D.較差)后,再將調(diào)查結果繪制成兩幅不完整的統(tǒng)計圖(如圖).請根據(jù)統(tǒng)計圖解答下列問題:

(1)本次調(diào)查中,王老師一共調(diào)查了________名學生;

(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;

(3)假定全校各班實施新課程改革效果一樣,全校共有學生2400人,請估計該校新課程改革效果達到A類的有多少學生;

(4)為了共同進步,王老師從被調(diào)查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果3×9×27×81=3n , 那么n=

查看答案和解析>>

同步練習冊答案