【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請寫出△ABC各點的坐標(biāo).
(2)求出△ABC的面積.
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A′B′C′,在圖中畫出△ABC變化位置。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達(dá)B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關(guān)系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標(biāo)是(7,80);④n=7.5.
其中說法正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點M,EF與AC交于點N,動點P從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動,伴隨點P的運動,矩形PEFG在射線AB上滑動;動點K從點P出發(fā)沿折線PE﹣﹣EF以每秒1個單位長的速度勻速運動.點P、K同時開始運動,當(dāng)點K到達(dá)點F時停止運動,點P也隨之停止.設(shè)點P、K運動的時間是t秒(t>0).
(1)當(dāng)t=1時,KE=_____,EN=_____;
(2)當(dāng)t為何值時,△APM的面積與△MNE的面積相等?
(3)當(dāng)點K到達(dá)點N時,求出t的值;
(4)當(dāng)t為何值時,△PKB是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC, P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M、N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分別從,兩地相向而行,他們距地的距離與時間的關(guān)系如圖所示,下列說法錯誤的是( )
A.甲的速度是B.甲出發(fā)4.5小時后與乙相遇
C.乙比甲晚出發(fā)2小時D.乙的速度是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場去年大豆和小麥的總產(chǎn)量為200噸,今年大豆和小麥的總產(chǎn)量為225噸,其中大豆比去年増產(chǎn)5%,小麥比去年増產(chǎn)15%,求該農(nóng)場今年大豆和小麥的產(chǎn)量各是多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩張完全相同的矩形紙片ABCD、FBED按如圖方式放置,BD為重合的對角線.重疊部分為四邊形DHBG.
(1)試判斷四邊形DHBG為何種特殊的四邊形,并說明理由;
(2)若AB=8,AD=4,求四邊形DHBG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,點D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)正方形ADEF繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點G.
①求證:BD⊥CF; ②當(dāng)AB=4,AD=時,求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△A'B'C'是由△ABC經(jīng)過平移得到的,它們的頂點在平面直角坐標(biāo)系中的坐標(biāo)如下表所示:
(1)觀察表中各對應(yīng)點坐標(biāo)的變化,并填空:
a= , b= ,c= ;
(2)在平面直角坐標(biāo)系中畫出△ABC及平移后的△A'B'C';(3)△A'B'C'的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com